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Introduction

This seminar on Continuum mechanics aims to derive and discuss models, finite elements, and numerical
methods for problems arising in continuum mechanics, especially elasticity, beams, plates, and shells.

The first part is devoted to classical (nonlinear) elasticity. It will turn out that this approach has severe
weaknesses when one of the domain dimensions is significantly smaller than the others. Thus, we perform
a dimension reduction leading us to (linear) beams and plates, revealing several typical discretization
problems for those problem classes. Non-standard finite elements like vector-valued tangential-continuous
Nédélec and matrix-valued normal-normal-continuous Hellan–Herrmann–Johnson elements are used to
construct robust discretization methods. Before going to shells, the “prima-donna” of structures, tools
from so-called extrinsic differential geometry are repeated, where a surface is embedded in R3. We
introduce the surface’s fundamental forms and related quantities (e.g. metric and Weingarten tensor),
(covariant) derivatives, and finite elements on surfaces. We end the seminar by discussing and simulating
linear shells.

Hands-on materials and numerical examples can be found on GitHub:

https://github.com/MichaelNeunteufel/RTGSeminarContinuumMechanics

These examples can be run directly in the browser without any installations required.
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Chapter 1

Elasticity
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This section introduces the equations of continuum mechanics (elasticity) to describe how an elastic
body gets deformed in the presence of forces like gravity. For literature on (nonlinear) elasticity and
continuum mechanics see e.g. [9, 21, 32, 5, 19].

1.1 Strain tensors

Let Ω ⊂ Rd be an open and bounded domain in d = 2, 3 dimensions and let the boundary ∂Ω be
sufficiently smooth. Then Ω describes the reference configuration of a body, also called the undeformed
configuration. The boundary is split into a Dirichlet and Neumann part ΓD and ΓN , respectively, with
ΓD ∩ΓN = ∅ and ΓD ∪ΓN = ∂Ω. Further, we assume that the measure of ΓD is not zero, i.e., |ΓD| ≠ 0.

Applying external forces to the body leads to deformation represented by the function

Φ :Ω → Rd

x 7→ Φ(x), (1.1.1)

which can be split additively into the identity function and the displacement u

Φ = id + u. (1.1.2)

Next, we introduce the deformation gradient

F := I +∇u = ∇Φ, (1.1.3)

where I denotes the identity matrix. A deformation is called permissible if the deformation determinant
J := det(F ) is greater than zero, J > 0, which entails that the material is non-interpenetrable, i.e., the
orientation is preserved and volume elements with positive measure have also positive measure after the
deformation.

To measure the quadratic change of lengths of the deformation, the (right) Cauchy–Green strain
tensor is introduced as

C := F⊤F . (1.1.4)

It is also called metric tensor in the context of differential geometry and shells. There holds for Φ ∈
C2(Ω,Rd) with Taylor’s theorem for ∥∆x∥ → 0

∥Φ(x+∆x)− Φ(x)∥2
∥∆x∥2 =

∥Φ(x) +∇Φ∆x+O(∥∆x∥2)− Φ(x)∥2
∥∆x∥2 =

∆x⊤F⊤F∆x+O(∥∆x∥3)
∥∆x∥2

=
∆x⊤C∆x

∥∆x∥2 +O(∥∆x∥),
(1.1.5)

i.e., it measures the change of lengths.
If C = I, the body does not get deformed; however, it could be rotated or translated. The following

theorem states that these motions are precisely the kernel of C − I, so-called rigid body motions (or
Euclidean motion).

Theorem 1.1.1 Let Ω be a connected domain and Φ ∈ C1(Ω,Rd). Then a deformation is a rigid body
motion if and only if

Φ ∈ RB := {Ψ(x) = a+Qx | a ∈ Rd, Q ∈ SO(d)}, (1.1.6)

where SO(d) := {A ∈ Rd×d | detA = 1 and A−1 = A⊤} denotes the special orthogonal group.

Proof: See e.g., [9, Theorem 1.8-1]. 2

This motivates the definition of the Green strain tensor

E :=
1

2
(C − I) (1.1.7)
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measuring the real strains induced by the deformation Φ. Its kernel is exactly the rigid body motions,
kerE = RB. Inserting (1.1.3)–(1.1.4) yields the representation

E =
1

2

(
∇u⊤∇u+∇u⊤ +∇u

)
. (1.1.8)

Assuming ∇u = O(ε) with 1 ≫ ε > 0 small and neglecting all higher order terms gives the linearized
strain tensor

ε(u) :=
1

2

(
∇u⊤ +∇u

)
= sym(∇u) (1.1.9)

used in linear elasticity.

Remark 1.1.2 (Engineering notation) Objects in reference notation are frequently denoted by cap-
ital letters, e.g., X for the position vector in the reference configuration. In contrast, objects in the
deformed configuration are denoted by small letters, e.g., x = Φ(X) for the position vector in the de-
formed configuration. The deformation gradient is then written as F = ∂x

∂X . Volume elements are related
by the deformation determinant dv = J dV . A line element dx in deformed configuration can be expressed
in reference configuration by dx = ∂x/∂X dX = F dX. So dxT dx = dXTCdX and we can define the
Green strain tensor by relating the line elements dxT dx− dXT dX = dXT (C − I)dX = 2dXT EdX.

1.2 Hyperelastic materials

We consider hyperelastic constitutive relations, i.e., the deformation energy is given by a potential Ψ :
Ω× Rd×d → R

Edef =

∫
Ω

Ψ(x,F (u(x))) dx. (1.2.1)

More general elastic materials and a derivation based on conservation laws can be found in the literature.
Further, for ease of presentation, we assume that the potential is homogeneous, i.e.,

Ψ(x, ·) = Ψ(·). (1.2.2)

Given Dirichlet data uD on ΓD, a static body load f , and traction forces g on ΓN we can define the
following minimization problem

W(u) :=

∫
Ω

Ψ(F (u))− f · u dx−
∫
ΓN

g · u ds → min!. (1.2.3)

Gravity is a classical body force, whereas a car driving over a bridge is an example of a traction force.
We seek a function u in the set of admissible displacements given by

U := {u : Ω → Rd |u = uD on ΓD, det(F (u)) > 0}. (1.2.4)

Note that the constraint det(F (u)) > 0 is often given implicitly in the material law or is neglected in
the small deformation case.

To compute the weak formulation of (1.2.3) we take the first variation in direction δu, well-known as
the principle of virtual works, yielding

DuW(u)[δu] =

∫
Ω

∂Ψ

∂F
: ∇δu− f · δu dx−

∫
ΓN

g · δu ds !
= 0 (1.2.5)

for all admissible test functions δu, i.e., δu ∈ UΓD
, where

UΓD
:= {δu : Ω → Rd | δu = 0 on ΓD}. (1.2.6)

In (1.2.5) we used the Frobenius scalar product of two matrices A : B =
∑d

i,j=1 AijBij and the chain

rule DuΨ(F (u))[δv] = ∂Ψ
∂F (F (u)) : Du(F (u))[δu].
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ΓD

g Ω f

n

Figure 1.1: Initial configuration of a body Ω with Dirichlet boundary ΓD, external forces f and g, and
outer unit normal vector n.

By defining the first Piola–Kirchhoff stress tensor

P :=
∂Ψ

∂F
(1.2.7)

and integration by parts in (1.2.5), we obtain the Euler–Lagrange equation of (1.2.3)
−div(P ) = f in Ω,

u = uD on ΓD,

Pn = g on ΓN ,

(1.2.8)

where n denotes the outer normal vector of Ω, cf. Figure 1.1.

Definition 1.2.1 We call a hyperelastic potential

• objective ( frame-indifferent), if for all positive definite F ∈ M+(d) := {A ∈ Rd×d |x⊤Ax >
0 for all 0 ̸= x ∈ Rd} and Q ∈ SO(d)

Ψ(QF ) = Ψ(F ). (1.2.9)

• isotropic, if for all F ∈ M+(d) and Q ∈ SO(d)

Ψ(FQ) = Ψ(F ). (1.2.10)

For objective materials, its response does not depend on the observer’s frame of reference. In other
words, the material depends only on stretches, not rotations (all real-life materials are objective). There
are no preferred directions for an isotropic material, such as steel. Wood is a classical example of a
strongly anisotropic material.

Example 1.2.2 The potential Ψ(F ) := µ
4

(
F⊤F − I

)
:
(
F⊤F − I

)
+ λ

8 tr(F⊤F − I)2, with µ > 0,
λ ≥ 0 is objective and isotropic (Exercise!).

A crucial consequence of objectivity is that the energy potential only depends on the Cauchy–Green
strain tensor.

Theorem 1.2.3 A potential Ψ : Rd×d → R is frame-indifferent if and only if it is a function of the
Cauchy–Green strain tensor C = F⊤F , i.e.,

Ψ(F ) = Ψ̂(C). (1.2.11)

Proof: See e.g., [5, Chapter VI, Theorem 1.6] or [9, Theorem 3.3-1]. 2

We will consider frame-indifferent potentials and write Ψ independently of arguments F , C, and E.
Using Theorem 1.2.3, the weak form (1.2.5) can be rewritten as: Find u ∈ U such that for all v ∈ UΓD∫

Ω

2
∂Ψ

∂C
(C(u)) : sym(F⊤(u)∇v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds, (1.2.12)
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where we utilized that DuC(u)[v] = Du

(
F (u)⊤

)
[v]F (u) + F (u)⊤Du

(
F (u)

)
[v] = 2 sym(F⊤(u)∇v).

Defining the second Piola–Kirchhoff stress tensor

Σ := 2
∂Ψ

∂C
(1.2.13)

and exploiting the symmetry of Σ gives∫
Ω

FΣ : ∇v dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds. (1.2.14)

Consequently, we obtain the relation

P = FΣ. (1.2.15)

Note that in contrast to Σ, P is not symmetric. For the sake of completeness, the symmetric Cauchy
stress tensor σ acting on the deformed configuration of the body is introduced by

σ =
1

J
FΣF⊤ =

1

J
PF⊤ =

1

J

∂Ψ

∂F
F⊤. (1.2.16)

Then by applying the transformation theorem and the chain rule (v ◦ Φ−1 = ṽ, (∇xv) ◦ Φ−1 = ∇x̃ṽF )∫
Ω̃

1

J
FΣ : (∇x̃ṽF ) dx̃ =

∫
Ω̃

σ : ∇x̃ṽ dx̃.

Assuming a frame-indifferent and isotropic potential yields that the energy potential Ψ is a function
of the invariants of the Cauchy–Green strain tensor.

Theorem 1.2.4 (Rivlin–Ericksen) Let S>(d) := {A ∈ Rd×d |A⊤ = A and detA > 0} denote the set
of symmetric matrices with positive determinant. An energy potential Ψ : Rd×d → R is frame-indifferent
and isotropic if and only if there exists a function Ψ : S>(d) → R depending only on the invariants of
the characteristic polynomial det(λI −C) = λ3 − I1(C)λ2 − I2(C)λ− I3(C) such that

Ψ(F ) = Ψ(I1(C), I2(C), I3(C)) = γ0(I1, I2, I3)I + γ1(I1, I2, I3)C + γ2(I1, I2, I3)C
2, (1.2.17)

where, with tr(C) and det(C) denoting the trace and determinant of C,

I1(C) = tr(C), I2(C) =
1

2

(
tr(C)2 − tr(C2)

)
, I3(C) = det(C). (1.2.18)

Proof: See e.g., [27] or [9, Theorem 3.6-1]. 2

Exercise 1.2.5 From the Rivlin–Ericksen theorem the potential in the Green strain tensor is of the form
Ψ(E) = Ψ( tr(E), tr(E2),detE). Assume that Ψ has at E = 0 a local minimum with value 0 and is
smooth. Defining µ := Ψ,2( tr(E), tr(E2),detE)|E=0 and λ := Ψ,11( tr(E), tr(E2),detE)|E=0, where
Ψ,2(·, ·, ·) denotes the partial derivative with respect to the second argument and Ψ,11(·, ·, ·) two derivatives
in the first one, there holds

Ψ(E) =
λ

2
tr(E)2 + µE : E +O(∥E∥3).

Ignoring the higher-order terms we obtain the St. Venant–Kirchhoff material law

ΨVK(E) = µ∥E∥2F +
λ

2
tr(E)2, ∥A∥2F := A : A, (1.2.19)

is widely used to model nonlinear behavior in a moderate deformation regime. However, it may happen
for large deformations that elements get compressed heavily and are even pressed through others. The
material law of Neo–Hooke

ΨNH(C) =
µ

2
( tr(C − I)− log(det(C))) +

λ

8
(log(det(C)))2 (1.2.20)
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Figure 1.2: Two solutions of rubber strip clamped on left and right boundary.

prevents the non-physical behavior of the St. Venant–Kirchhoff material law, as there holds

ΨNH(C) → ∞ for det(C) = (det(F ))2 → 0 or det(C) → ∞, (1.2.21)

i.e., infinite energy is needed to completely compress or stretch the material. We remark that, especially
in the (nearly) incompressible regime, a slightly different material law of Neo–Hooke is also used, namely

Ψ̃NH(C) =
µ

2
( tr(C − I)− log(det(C))) +

λ

2
(
√
det(C)︸ ︷︷ ︸
=detF

−1)2. (1.2.22)

The two material constants µ > 0 and λ > 0 used above are the so-called Lamé parameters. Two
more physically interpretable constants are the Young’s modulus E > 0, representing the stiffness of a
solid material, and the Poisson’s ratio 0 ≤ ν < 1/21. The latter describes the expansion or contraction
in the perpendicular direction to the force compressing or stretching the material. Physical units are
[µ] = [λ] = [E] = N

m2 = Pa Pascal, whereas the Poisson ratio is dimensionless. To convert these
parameters, the following formulae are used

ν =
λ

2(λ+ µ)
, E =

µ(3λ+ 2µ)

λ+ µ
, (1.2.23a)

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (1.2.23b)

Note that in the limit ν → 1
2 , or equivalently λ → ∞, the material is called incompressible, necessitating

special (numerical) treatment.

1.3 Theoretical results of nonlinear elasticity

The question of existence and uniqueness of this (highly nonlinear) equations is delicate. From physical
examples, it is known that we cannot expect uniqueness. Considering e.g., a rubber strip with both ends
fixed and neglecting gravity, the identity is a trivial solution for the displacement. When twisting one of
the ends by 2π (360◦), we obtain a different solution to the same boundary conditions, see Figure 1.2. In
this manner, we can even produce infinitely many solutions by twisting. Other examples are given, e.g.,
by buckling (bifurcations) or snap-through problems, where two solutions exist for one external force
(one before and one after the snap-through).

For existence, one approach exploits, if possible, the polyconvex structure of the energy potential Ψ
in its invariants Ii(C), compare (1.2.18), proving the existence of minimizers [3]. The material law of
St. Venant–Kirchhoff is not polyconvex, but the Neo–Hooke material law falls in this category. A large
class of Ogden-type materials fulfills this assumption. Another ansatz uses the implicit function theorem,
obtaining a unique solution for small data. Therefore, relatively strong regularity assumptions must be
made [9].

Only a little rigorous mathematical numerical analysis for finite elasticity has been accomplished
so far. E.g., in [7] a priori error estimates for finite element discretizations in nonlinear elasticity are
discussed for polyconvex materials under the assumption of sufficiently small right-hand sides.

1.4 Linearized elasticity

Under the assumption of small deformations all three stress tensors (1.2.7), (1.2.13), and (1.2.16) reduce
to one, which we denote by σ (e.g., P = FΣ = (I +∇u)Σ = Σ+O(ε2) as ∇u = O(ε) by assumption).

1For meta-materials, the Poisson ratio can also take negative values.
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Assuming a quadratic potential Ψ(·), we deduce a linear stress-strain relation by σ = ∂Ψ
∂ε = Cε, where

C denotes the fourth-order elasticity tensor. For an isotropic and frame-indifferent material, the stress-
strain relation can be written in Voigt notation as

σ11

σ22

σ33

σ23

σ13

σ12

 =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0
ν 1− ν ν
ν ν 1− ν

1− 2ν
1− 2ν

0 1− 2ν




ε11
ε22
ε33
ε23
ε13
ε12

 , (1.4.1)

or in matrix notation σ = E
(1+ν)(1−2ν) ((1− 2ν)ε+ ν tr(ε)I) = 2µε+ λ tr(ε)I. For ν ̸= 1

2 relation (1.4.1)

can be inverted, ε = C−1σ,
ε11
ε22
ε33
ε23
ε13
ε12

 =
1

E


1 −ν −ν
−ν 1 −ν
−ν −ν 1

1 + ν
1 + ν

1 + ν




σ11

σ22

σ33

σ23

σ13

σ12

 , (1.4.2)

and C−1 is called the compliance tensor. Relation (1.4.2) can be written compactly as

ε =
1

E
((1 + ν)σ − ν tr(σ)I) =

1

E

(
(1 + ν) dev(σ) +

1− 2ν

2
tr(σ)I

)
, (1.4.3)

where dev(A) = A− 1
d tr(A)I denotes the deviatoric (trace-free) part of a matrix. Here, the case ν = 1

2
is well-defined leading to the identity ε = 1+ν

E dev(σ), which is unique up to the trace of σ.
The strong form of (1.2.8) becomes in the linearized case

−div(σ) = f in Ω,

u = uD on ΓD,

σn = g on ΓN ,

(1.4.4)

and the variational problem (inserting the stress-strain relation) reads: Find u ∈ U such that for all
v ∈ UΓD ∫

Ω

Cε(u) : ε(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds. (1.4.5)

The material laws of St. Venant–Kirchhoff and Neo–Hooke reduce to the linear material law of Hooke

ΨH(ε) := µ∥ε∥2F +
λ

2
( tr(ε))2 (1.4.6)

and we obtain the problem: Find u ∈ U such that for all test functions v ∈ UΓD∫
Ω

2µ ε(u) : ε(v) + λ div(u)div(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds. (1.4.7)

The unique solvability of (1.4.5) is proven in the next section. Note that (1.4.5) and (1.4.7) coincide for
C defined as in (1.4.1).

1.5 Analysis of linear elasticity

We use the classical Lax–Milgram Lemma for elliptic problems to prove existence and uniqueness for the
linear elasticity problem (1.4.7).
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Lemma 1.5.1 (Lax–Milgram) Let a(·, ·) : V × V → R be a continuous and elliptic bilinear form with
constants α and β, respectively. Then, for all f ∈ V ∗ there exists a unique solution u ∈ V of the problem

a(u, v) = f(v), for all v ∈ V (1.5.1)

and there holds the stability estimate

∥u∥V ≤ 1

β
∥f∥V ∗ . (1.5.2)

Surprisingly, the entire gradient of a vector-valued function can be bounded by its symmetric part,
cf. [14], at the cost of possibly large constants for anisotropic domains.

Lemma 1.5.2 (Korn’s inequality) Let Ω be a connected and bounded Lipschitz domain (i.e., the
boundary can locally be parameterized by a Lipschitz function). Then there exists a constant ĉK > 0
such that

ĉ2K∥u∥2H1 ≤ ∥u∥2L2 + ∥ε(u)∥2L2 (1.5.3)

for all u ∈ H1(Ω,Rd) and ĉK depends only on Ω. Assume further that ΓD ⊂ ∂Ω has positive measure.
Then there exists a constant cK > 0 such that

c2K∥u∥2H1 ≤ ∥ε(u)∥2L2 (1.5.4)

for all u ∈ H1
ΓD

(Ω,Rd). The constants ĉK and cK tend to zero for deteriorating aspect ratio.

Korn’s inequality relies on the fact that by setting Dirichlet boundary conditions at parts of the boundary,
the kernel of the symmetric gradient operator consisting of linearized rigid body motions

ker ε(·) = RBlin := {Φ(x) = Ax+ b | b ∈ Rd, A ∈ Rd×d with A⊤ = −A} (1.5.5)

is locked.

Corollary 1.5.3 The bilinear form

a(u, v) :=

∫
Ω

2µ ε(u) : ε(v) + λ divudivv dx (1.5.6)

is continuous and coercive (elliptic) with

|a(u, v)| ≤ (2µ+ λ) ∥u∥H1 ∥v∥H1 ,

a(u, u) ≥ 2µ c2K ∥u∥2H1 .

Céa’s lemma yields the following a-priori finite element error estimate for Lagrange elements uh ∈
Uh ⊂ U

∥u− uh∥2H1 ≤ 2µ+ λ

2µ c2K
inf

vh∈Uh

∥u− vh∥2H1 , (1.5.7)

from which we deduce that the problem is ill conditioned if the material is nearly incompressible, λ ≫ µ,
or the geometry is anisotropic leading a small Korn constant, cK ≪ 1.

Exercise 1.5.4

1. Proof Corollary 1.5.3 and that the right-hand sides (1.4.7) are continuous functionals in H1(Ω,Rd).

2. Show that Korn’s inequality is sharp by constructing a specific displacement on Ω = (0, 1) ×
(−t/2, t/2) and U = {u ∈ H1(Ω,R2) |u(0, ·) = 0} and showing that cK ≤ c t. Hint: Find u
such that ∥ε(u)∥2/∥∇u∥ ≤ ct2.

3. Define the pressure-like variable p = λ divu as an additional field and rewrite the equations into a
Stokes system (with penalty term). Argue that by using a Stokes stable pairing for (u, p), nearly
incompressible elasticity can be simulated robustly.

11



Chapter 2

Timoschenko and Bernoulli beam
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We saw in the previous chapter that for strong anisotropic structures the elasticity problem is ill-posed
(due to Korn’s inequality) and numerical simulations showed so-called locking behavior. Discretizing
thin-walled structures with isotropic (small) elements is inefficient due to the vast number of elements
needed. Using elements reflecting the structure and aspect ratio would be more economical, but lead
to (shear) locking behavior. For structures, where one dimension is of magnitudes smaller than the
other directions, it is expected that the material’s behaviour in this direction can be described with
fewer parameters, such that a dimension reduction to the mid-surface is an attractive strategy. One
has to mesh and discretize objects of one dimension less, leading to smaller matrices. In addition to
the computational speed-up, it was hoped that the locking behavior of full elasticity would be cured.
However, as we will see, the shear locking problem is shifted but not circumvented or replaced with the
difficulties of solving a fourth-order (biharmonic) problem. Nevertheless, the resulting beam equations
yield more insight into the issue, which will be helpful when going to plates and shells.

2.1 Dimension reduction to beams

If we have a structure Ω ⊂ R2 where one dimension is significantly thinner than the other, a dimension
reduction to a one-dimensional problem can be done. If the two-dimensional structure is of the form
Ω = (0, 1) × (−t/2, t/2) we can perform a reduction to the mid-surface S = (0, 1) × {0}. We assume
for simplicity that Dirichlet boundary conditions are prescribed on the left and right boundary {0, 1} ×
(−t/2, t/2) and homogeneous Neumann boundaries (“do-nothing condition”) at the top and bottom.

U
w

β

Figure 2.1: Horizontal deflection U , vertical deflection w, and rotation of normal β of a beam.

To derive the beam equation in the setting of linear elasticity, we can start with a Galerkin-semidiscretization
by approximating an infinite sum in the thickness direction

u = (ux, uy) ≈

Nx∑
i=0

ux
i (x)y

i,

Ny∑
i=0

uy
i (x)y

i

 . (2.1.1)

We consider the lowest possible order, where the (linearized) rigid body motions, i.e. both translations
and a rotation, are included, leading to Nx = 1, Ny = 0 and

u = (U(x)− y β(x), w(x)). (2.1.2)

Here, U(x) and w(x) correspond to the horizontal and vertical deflection, respectively, and β(x) is the
linearized rotation of the normal vector on the initial configuration, cf. Figure 2.1. Analogously, test
functions are given by v = (V (x) − yδ(x), v(x)). Inserting into the equation of linear elasticity (1.4.7)
we obtain

ε(u) =

(
U ′ − yβ′ 1

2 (w
′ − β)

1
2 (w

′ − β) 0

)
, ε(v) =

(
V ′ − yδ′ 1

2 (v
′ − δ)

1
2 (v

′ − δ) 0

)
,

ε(u) : ε(v) = (U ′ − yβ′)(V ′ − yδ′) +
1

2
(w′ − β)(v′ − δ), div(u) div(v) = (U ′ − yβ′)(V ′ − yδ′)

and further

a(u, v) =

∫ 1

0

∫ t/2

−t/2

2µ ε(u) : ε(v) + λ div(u) div(v) dy dx

=

∫ 1

0

∫ t/2

−t/2

(2µ+ λ)(U ′ − yβ′)(V ′ − yδ′) +
µ

2
(w′ − β)(v′ − δ) dy dx

=

∫ 1

0

(2µ+ λ)t U ′V ′ + (2µ+ λ)
t3

12
β′δ′ +

t µ

2
(w′ − β)(v′ − δ) dx.
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Assuming that the force is independent of the thickness direction f = (fx(x), fy(x)) the elasticity
problem decouples into a Poisson-like membrane problem: Find U ∈ H1

0 ((0, 1)) such that for all V ∈
H1

0 ((0, 1))

(2µ+ λ)t

∫ 1

0

U ′V ′ dx = t

∫ 1

0

fxV dx (2.1.3)

and the bending problem: Find (w, β) ∈ H1
0 ((0, 1)) × H1

0 ((0, 1)) such that for all (v, δ) ∈ H1
0 ((0, 1)) ×

H1
0 ((0, 1))

(2µ+ λ)
t3

12

∫ 1

0

β′δ′ dx+
t µ

2

∫ 1

0

(w′ − β)(v′ − δ) dx = t

∫ 1

0

fyv dx. (2.1.4)

Neglecting the Lamé parameters and constants and rescaling the right-hand side f := 1
t2 f

y we obtain
the Timoshenko beam (also called Timoshenko–Ehrenfest beam): Find (w, β) ∈ H1

0 ((0, 1)) ×H1
0 ((0, 1))

such that for all (v, δ) ∈ H1
0 ((0, 1))×H1

0 ((0, 1))∫ 1

0

β′δ′ dx+
1

t2

∫ 1

0

(w′ − β)(v′ − δ) dx =

∫ 1

0

f v dx, (2.1.5)

which corresponds to the minimization problem

W(w, β) :=
1

2

∫ 1

0

(β′)2 dx+
1

2t2

∫ 1

0

(w′ − β)2 dx−
∫ 1

0

f w dx → min!. (2.1.6)

The first term is the beam’s bending energy, which measures how strongly the beam curves. The second
term is the shearing energy, which measures how much the initial configuration’s deformed normal
deviates from the deformed configuration’s normal (given by w′).

The Timoshenko beam involves a parameter, the thickness t, so the bending and shearing parts are
scaled differently. Although the Timoshenko beam is H1

0 × H1
0 elliptic, its constant depends on the

thickness, which leads with Céa’s Lemma to a parameter dependent a-priori error estimate

∥(wh, βh)− (w, β)∥X ≤ c(t) inf
(vh,δh)∈Xh

∥(vh, δh)− (w, β)∥X . (2.1.7)

In the limit of vanishing thickness, t → 0, it acts as a penalty enforcing the constraint β = w′.
Therefore, in the limit, we can eliminate the rotation β leading to the fourth-order minimization problem

W(w) =
1

2

∫ 1

0

(w′′)2 dx−
∫ 1

0

f w dx → min!, (2.1.8)

which corresponds to the variational formulation: Find w ∈ H2
0 ((0, 1)) such that for all v ∈ H2

0 ((0, 1))∫ 1

0

w′′v′′ dx =

∫ 1

0

f v dx. (2.1.9)

This fourth-order ODE problem is called the Euler–Bernoulli beam.

y

∂w
∂x

u = −y ∂w
∂x

β
∂w
∂x

Figure 2.2: Rotation of Euler–Bernoulli beam and Timoshenko beam.
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2.2 Discretization of Timoshenko beam

A straightforward discretization is to use Lagrange finite elements of the same order for the displacement
and rotation (wh, βh) ∈ Uk

h ×Uk
h , which we will see may induce locking for a small thickness parameter t.

In the limit t → 0, the shearing energy can be seen as a penalty enforcing w′
h = βh. In the lowest-order

case, this identity forces the piece-wise constant w′
h to fit with the linear and continuous βh, leading

to the trivial solution, wh = βh = 0. From the theory of mixed methods, we will see that inserting
an L2-projection into the shearing term cures this problem by relaxing the constraint. In 1D, this is
equivalent to a numerical under-integration using only the mid-point rule for the shearing term. Using
for wh one polynomial order higher than βh improves the locking behavior. This, however, leads to
sub-optimal (linear) convergence rates for β. In Section 2.4 we analyze and present a shear-locking-free
(discretized) method for the Timoshenko beam.

We used clamped boundary conditions in the derivation, u, β ∈ H1
0 ((0, 1)). Other boundary conditions

like free, simply supported, or constrained rotation are possible, define Q := 1
t2 (w

′ − β) and M := β′:

boundary condition w β
clamped D D w = 0, β = 0

simply supported D N w = 0, M = 0
free N N Q = 0, M = 0

constraint rotation N D Q = 0, β = 0

Exercise 2.2.1 Derive, implement, and test the different boundary conditions for the Timoshenko beam.
Motivate the physical quantities Q and M .

In the limit t → 0, the equality w′ = β holds. Therefore, the rotation β has to coincide with the
linearized normal vector of the deformed beam and can be eliminated from the equation, leading to the
Euler–Bernoulli beam.

2.3 Discretization of Euler–Bernoulli beam

In contrast to the Timoshenko beam, the thickness parameter t does not enter the Euler–Bernoulli
beam equation anymore. Therefore, it does not suffer from locking, but C1-conforming finite elements
are required, as we now face a fourth-order problem. In 1D, constructing C1-elements is easy by e.g.
Hermite polynomials. This task is much more involved for higher dimensions, especially if unstructured
(triangular) grids are required. As pre-work for plates and shells, we focus on formulations enabling
Lagrangian elements for the vertical deflection w.

Let us rewrite the Euler–Bernoulli beam as a mixed saddle-point problem by introducing the linearized
moment σ = w′′ as an additional unknown∫ 1

0

στ dx −
∫ 1

0

w′′τ dx = 0 for all τ, (2.3.1a)

−
∫ 1

0

σ v′′ dx = −
∫ 1

0

f v dx for all v, (2.3.1b)

and use integration by parts such that all terms are well defined for (w, σ) ∈ H1
0 ((0, 1))×H1((0, 1))∫ 1

0

στ dx +

∫ 1

0

w′τ ′ dx = 0 for all τ ∈ H1((0, 1)), (2.3.2a)∫ 1

0

σ′v′ dx = −
∫ 1

0

f v dx for all v ∈ H1
0 ((0, 1)). (2.3.2b)

We can use Lagrange finite elements for discretization. The following section shows that this leads to a
stable formulation and method.

Exercise 2.3.1 Show that σ ∈ H1((0, 1)) together with w ∈ H1
0 ((0, 1)) leads to clamped boundary con-

ditions, w = w′ = 0. What changes if σ ∈ H1
0 ((0, 1))? How can we incorporate free boundary conditions

at x = 1 and clamped boundary conditions at x = 0?

15



2.4 Analysis of Timoshenko and Euler–Bernoulli beam

For analyzing mixed saddle-point problems, the Lax–Milgram Lemma cannot be applied due to the
missing coercivity on the whole product space. Brezzi’s Theorem [5, 4.3 Theorem, 4.11 Theorem] gives
sufficient conditions to prove well-posedness for this kind of problem.

2.4.1 Brezzi’s Theorem for saddle point problems

Indefinite saddle-point problems, arising e.g., for minimization problems under constraints, are of the
following general form: Find (u, p) ∈ V ×Q such that for all (v, q) ∈ V ×Q

a(u, v) + b(v, p) = f(v), (2.4.1a)

b(u, q) = g(q). (2.4.1b)

Equation (2.4.1b) enforces a constraint on u, which can be incorporated as a penalty formulation yielding
the structure (t > 0 small)

a(u, v) + b(v, p) = f(v), (2.4.2a)

b(u, q)− t c(p, q) = g(q). (2.4.2b)

Theorem 2.4.1 (Brezzi) Assume that a(·, ·) : V × V → R and b(·, ·) : V × Q → R are continuous
bilinear forms, i.e.,

|a(u, v)| ≤ α2∥u∥V ∥v∥V for all u, v ∈ V, (2.4.3)

|b(u, q)| ≤ β2∥u∥V ∥q∥Q for all u ∈ V, for all q ∈ Q. (2.4.4)

Assume there holds coercivity of a(·, ·) on the kernel, i.e.,

a(u, u) ≥ α1∥u∥2V for all u ∈ V0, (2.4.5)

V0 := {u ∈ V | b(u, q) = 0 for all q ∈ Q} (2.4.6)

and there holds the Ladyzhenskaya–Babuška–Brezzi (LBB) condition

sup
u∈V

b(u, q)

∥u∥V
≥ β1∥q∥Q for all q ∈ Q. (2.4.7)

Then, the mixed problem (2.4.1) is uniquely solvable. The solution fulfills the stability estimate

∥u∥V + ∥p∥Q ≤ c (∥f∥V ∗ + ∥g∥Q∗) (2.4.8)

with the constant c depending on α1, α2, β1, and β2.

Theorem 2.4.2 (extended Brezzi) Assume all requirements of Theorem 2.4.1 are fulfilled. Further,
let c(·, ·) be a continuous and non-negative bilinear form and a(·, ·) be non-negative. Then, for t ≤ 1, the
mixed problem (2.4.2) has a unique solution, fulfilling the following stability estimate independent of t

∥u∥V + ∥p∥Q ≤ c (∥f∥V ∗ + ∥g∥Q∗) , c ̸= c(t). (2.4.9)

2.4.2 Analysis of Timoshenko beam

We analyze the Timoshenko beam as mixed formulation by defining the shear γ = 1
t2 (w

′−β) as additional
unknown: Find (w, β, γ) ∈ H1

0 ((0, 1)) × H1
0 ((0, 1)) × L2((0, 1)) such that for all (v, δ, ξ) ∈ H1

0 ((0, 1)) ×
H1

0 ((0, 1))× L2((0, 1)) ∫ 1

0

β′δ′ dx +

∫ 1

0

(v′ − δ)γ dx =

∫ 1

0

f v dx, (2.4.10a)∫ 1

0

(w′ − β)ξ dx− t2
∫ 1

0

γ ξ dx = 0. (2.4.10b)

Note that we multiplied (2.4.10b) with t2 such that the thickness now appears in the numerator. The
limit case t = 0 is therefore well-defined.
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Proposition 2.4.3 The mixed formulation of the Timoshenko beam (2.4.10) is uniquely solvable and
stable.

Proof: Continuity of the bilinear forms and non-negativity of a(·, ·) and c(·, ·) are apparent.
On the kernel

B0 =
{
(w, β) ∈ H1

0 ((0, 1))×H1
0 ((0, 1))

∣∣∣ ∫ 1

0

(w′ − β)γ dx = 0 for all γ ∈ L2((0, 1))
}

= {(w, β) ∈ H1
0 ((0, 1))×H1

0 ((0, 1)) |w′ = β}

there holds with Friedrichs’s inequality1

∥β′∥2L2 =
1

2
|β|2H1 +

1

2
|β|2H1 ≥ c

(
∥β∥2H1 + ∥β∥2L2

)
≥ c

(
∥β∥2H1 + ∥w∥2H1

)
. (2.4.11)

Further, following [5], for given γ ∈ L2((0, 1)) define ρ(x) := x(1− x) and

A :=

∫ 1

0

γ(s) ds
/∫ 1

0

ρ(s) ds, w(x) :=

∫ x

0

γ(s) ds−A

∫ x

0

ρ(s) ds, β(x) := −Aρ(x).

Then ρ, w, β ∈ H1
0 ((0, 1)) and there holds with a constant c > 0, ∥w′∥L2 ≤ c∥γ∥L2 , ∥β′∥L2 ≤ c∥γ∥L2 ,

and w′ − β = γ. Thus, the LBB condition is fulfilled

sup
(w,β)∈H1×H1

∫ 1

0
(w′ − β)γ dx

∥w∥H1 + ∥β∥H1

≥ ∥γ∥2L2

∥w′∥L2 + ∥β′∥L2

≥ 1

2c
∥γ∥L2 . (2.4.12)

Brezzi’s Theorem 2.4.2 now finishes the proof, giving the robust estimate

∥β∥H1 + ∥w∥H1 +
1

t2
∥w′ − β∥L2 ≤ c∥f∥H−1 , c ̸= c(t). (2.4.13)

2

Using Lagrange finite elements for w and β and one polynomial order less L2-conforming discontinuous
(i.e. piece-wise polynomials) elements for γ gives a stable discretization for the Timoshenko beam, which
can easily be shown (Exercise!). We obtain the optimal t-independent convergence rates:

Corollary 2.4.4 Let (w, β, γ) be the solution of the continuous problem (2.4.10) and (wh, βh, γh) ∈
Uk
h,0 × Uk

h,0 ×Qk−1
h (the space of continuous piece-wise polynomials of order k and discontinuous piece-

wise polynomials of order k − 1) the corresponding discrete one for a positive integer k. If the exact
solution is sufficiently smooth, there holds

∥w − wh∥H1 + ∥β − βh∥H1 + ∥γ − γh∥L2 ≤ chk(∥w∥Hk+1 + ∥β∥Hk+1 + ∥γ∥Hk), c ̸= c(t). (2.4.14)

The second equality (2.4.10b) states in the discrete case that the shearing can be expressed as γh =
1
t2Π

L2,k−1(w′
h − βh). Inserting this into the first equation (2.4.10a) yields the problem: Find (wh, βh) ∈

Uk
h,0 × Uk

h,0 such that for all (vh, δh) ∈ Uk
h,0 × Uk

h,0∫ 1

0

β′
hδ

′
h dx+

1

t2

∫ 1

0

ΠL2,k−1(w′
h − βh)Π

L2,k−1(v′h − δh) dx =

∫ 1

0

f vh dx, (2.4.15)

which corresponds to a numerical under-integration of the shear term. For example, in the lowest-order
case, the projection into piece-wise constants can be realized using the mid-point rule for numerical
integration.

This (non-standard) primal method is equivalent to the mixed formulation, so we obtain the same
stability and convergence results. Its advantage is obtaining a positive definite stiffness matrix, whereas
the mixed system leads to an indefinite matrix.

1Friedrich: ∥u∥H1 ≤ cF |u|H1 , for all u ∈ H1
0 (Ω)
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Remark 2.4.5 When using at least quadratic polynomials for the vertical deflection and rotation no
shear locking occurs for the Timoshenko beam anymore, however, convergence rates with a sub-optimal
rate are obtained for β in a pre-asymptotic regime depending on t. As we will see later for the Reissner–
Mindlin plate (the 2D analog to the Timoshenko beam), its analysis and numerical treatment to avoid
shear locking is more involved.

Remark 2.4.6 Setting t = 0 in (2.4.10b) leads to a stable discretization for the Euler–Bernoulli beam.

Exercise 2.4.7 Show with Remark 2.4.6, that the solution of the Timoshenko beam (w, β, γ)TB converges
to the Euler–Bernoulli beam solution (w, β, γ)EBB

∥(w, β, γ)TB − (w, β, γ)EBB∥ ≤ c t2, c ̸= c(t). (2.4.16)

Hint: Take the difference of the solutions as a new unknown for the difference of the corresponding
equations and use Brezzi’s Theorem.

2.4.3 Analysis of Bernoulli beam

From the Lax–Milgram Lemma, we directly deduce that the Euler–Bernoulli beam is well-posed on
H2

0 ((0, 1)) and Céa’s Lemma yields a standard a-priori error estimate. The big drawback is that we need
C1 finite elements for a conforming discretization. In 1D, Hermite polynomials are directly applicable;
however, extensions to 2D Kirchhoff–Love plates are complicated. Therefore, we analyze the mixed
method (2.3.2) with Brezzi enabling the usage of Lagrange finite elements.

Proposition 2.4.8 The mixed formulation (2.3.2) of the Euler–Bernoulli beam yields a unique solution.

Proof: By choosing σ = w, the LBB condition is fulfilled. The kernel

V0 =
{
σ ∈ H1((0, 1))

∣∣∣ ∫ 1

0

σ′w′ = 0, for all w ∈ H1
0 ((0, 1))

}
= {σ = ax+ b | a, b ∈ R}

consists only of linear functions. As all norms are equivalent in finite-dimensional spaces, the kernel
coercivity is also fulfilled. All bilinear forms are continuous for the H1-norm such that the conditions
for Brezzi’s theorem 2.4.1 are fulfilled. 2
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Chapter 3

Reissner–Mindlin and
Kirchhoff–Love plates
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After deriving the beam equations, we focus in this section on the 2D extension to plates.

3.1 Reissner–Mindlin plate equation

Assuming a thin three-dimensional plate Ω = (0, 1)2×(−t/2, t/2), we can perform a dimension reduction
to the mid-surface S = (0, 1)2 × {0} by a semi-discretization approach, which ansatz would read

u = (U1(x, y)− zβ1(x, y), U2(x, y)− zβ2(x, y), w(x, y)). (3.1.1)

Note, that the horizontal displacement U = (U1, U2) and the rotation β = (β1, β2) are now two-
dimensional quantities, whereas the vertical deflection w is again a scalar.

Again, we assume the structure to be clamped on all boundaries except the top and bottom ones,
where homogeneous Neumann boundary conditions are prescribed. We consider a second approach of
derivation in this section. To this end, we postulate kinematic assumptions, which are named after
Reissner and Mindlin:

H1. Lines normal to the mid-surface get deformed linearly, and they remain lines.

H2. The displacements in z-direction are independent of the z-coordinate.

H3. Points on the mid-surface can only be deformed in the z-direction.

H4. Stresses σ33 in normal direction vanish (called plane-stress assumption).

With H1–H3 the displacements are of the form

u1(x, y, z) = −zβ1(x, y), u2(x, y, z) = −zβ2(x, y), u3(x, y, z) = w(x, y). (3.1.2)

Hypothesis H3 directly enforces that the horizontal displacements of the membrane problem are elimi-
nated and yields together with H1 the form of the shearing-related horizontal displacements u1 and u2.
H2 in combination with H1 gives the form of the vertical displacement. Assumption H4 is needed as from
u3 = w(x, y) there follows ε33(u) = 0, i.e., no strains in thickness direction. Using (1.4.1) to compute σ33

yields σ33 = E
(1+ν)(1−2ν) ((1− ν)ε33 + ν(ε11 + ε22)) = λ(ε11 + ε22) ̸= 0 in general. This is non-physical

and leads to a not asymptotically correct model. It induces a too stiff behavior, yielding artificial stiff-
ness. Thus, σ33 = 0 is postulated to re-obtain an asymptotically correct model, which converges to the
3D solution in the limit of vanishing thickness. Setting σ33 = 0 implies that the material can stretch in
the thickness direction without inducing stresses. The 3D elasticity strain tensor reads with (3.1.2)

ε(u) =

−z∂1β1 −z 1
2 (∂2β1 + ∂1β2)

1
2 (∂1w − β1)

−z∂2β2
1
2 (∂2w − β2)

sym 0

 (3.1.3)

From H4, σ33 = 0, we can express ε33 = − ν
1−ν (ε11 + ε22) by using (1.4.1) and reinserting yields

σ11

σ22

σ12

σ13

σ23

 =
E

1− ν2


1 ν 0
ν 1

1− ν
1− ν

0 1− ν



ε11
ε22
ε12
ε13
ε23

 . (3.1.4)

For example, there holds

σ11 =
E

(1 + ν)(1− 2ν)
((1− ν)ε11 + νε22 + νε33)

=
E

(1 + ν)(1− 2ν)

(
(1− ν − ν2

1− ν
)ε11 + (ν − ν2

1− ν
)ε22

)
=

E

(1− ν2)(1− 2ν)

(
(1− 2ν + ν2 − ν2)ε11 + (ν − 2ν2)ε22

)
=

E

1− ν2
(ε11 + νε22).
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The energy ∥ε∥2C = Cε : ε = σ : ε reads

σ : ε =

2∑
i,j=1

σijεij + 2

2∑
j=1

ε3jσ3j =
E

1 + ν

( 2∑
i,j=1

ε2ij +
ν

1− ν
(ε11 + ε22)

2 + 2

2∑
j=1

ε23j

)
.

Next, we integrate the arising terms over the thickness and insert the strain definition (3.1.3)∫ t/2

−t/2

2∑
i,j=1

ε2ij dz =

∫ t/2

−t/2

z2ε(β) : ε(β) dz =
t3

12
ε(β) : ε(β),

∫ t/2

−t/2

(ε11 + ε22)
2 dz =

t3

12
div(β)2,

∫ t/2

−t/2

2

2∑
j=1

ε23j dz =

∫ t/2

−t/2

2

4
(∇w − β) · (∇w − β) dz =

t

2
∥∇w − β∥2,

where ∇, ε, and div denote the differential operators acting only on the first two indices i, j = 1, 2. Thus,
the total energy W(w, β) = 1

2

∫
Ω
σ : ε d(x, y, z) becomes with the notation ds = d(x, y)

W(w, β) =
1

2

∫
S
σ : ε d(s, z) =

t3E

24(1− ν2)

∫
S
(1− ν)∥ε(β)∥2 + ν div(β)2 ds+

Gt

2

∫
S
∥∇w − β∥2 ds,

(3.1.5)

where G = E
2(1+ν) denotes the shearing modulus. Classically, the shear correction factor κ = 5/6 is

additionally inserted into the shearing energy term to compensate for high-order effects of the shear
stresses, which are not constant through the thickness.

The right-hand side f is assumed to act only vertically on the plate and is independent of the thickness
f = (0, 0, fz(x, y)). Integrating over the thickness and rescaling f := t−2fz leads to the term t3

∫
S f v ds.

To simplify notation, we set Ω = S, use dx for integration over the mid-surface, neglect the underline
for the differential operators, and define the plate elasticity tensor

CA :=
E

1− ν2
((1− ν)A+ ν tr(A)I). (3.1.6)

Note, that after the elimination of ε33 the Poisson ratio ν ∈ (0, 1) is allowed instead of (0, 1/2). All
together, taking the variations of energy (3.1.5) and dividing by t3 yields the clamped Reissner–Mindlin
plate equation: Find (w, β) ∈ H1

0 (Ω)×H1
0 (Ω,R2) such that for all (v, δ) ∈ H1

0 (Ω)×H1
0 (Ω,R2)

1

12

∫
Ω

Cε(β) : ε(δ) dx+
κG

t2

∫
Ω

(∇w − β) · (∇v − δ) dx =

∫
Ω

f v dx. (3.1.7)

We distinguish between the following plate boundary conditions depending on the different combi-
nation of Dirichlet and Neumann boundary conditions for the vertical deflection w and the rotations β.
Let M := 1

12Cε(β) be the bending moment tensor and Q := κG
t2 (∇w − β) the shear force.

boundary condition w βn βt

clamped D D D w = 0, β = 0
free N N N Q · n = 0, Mn = 0

hard simply supported D N D w = 0, n⊤Mn = 0, βt = 0
soft simply supported D N N w = 0, Mn = 0

Table 3.1: Reissner–Mindlin plate boundary conditions split into the rotations’ vertical deflection and
normal/tangential components. D denotes Dirichlet and N Neumann boundary.

The Reissner–Mindlin plate equations entail, in addition to shear locking, possible boundary layers,
where the (stress) solutions rapidly change. To generate accurate solutions, these boundary layers need to
be resolved. The scaling of the layer is of order O(t) and the strength differ on the prescribed boundary
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conditions. For clamped and hard simply supported plates the boundary layer is less intensive than
for free and soft simply supported. An asymptotic boundary layer analysis can be found, e.g. in [1].
An explanation of the appearance of boundary layers is that on the one hand, we have prescribed the
rotations at the boundary, and on the other hand, for t → 0, the equality ∇w = β is enforced by the
shearing term. This might lead to discrepancies such that inside the boundary layer the rotations change
from fitting the boundary conditions to minimizing the difference to ∇w. For Kirchhoff–Love plates,
described in the next section, these boundary layers do not occur, as the rotations β, which cause them,
are eliminated from the equation.

Remark 3.1.1 The analysis cannot be performed directly with Brezzi’s Theorem 2.4.1 following the
analysis of the Timoshenko beam. Instead, a Helmholtz decomposition is used to decompose the equation
into two Poisson problems and one Stokes problem, which can then be solved separately (see e.g. [5]).

3.2 Kirchhoff–Love plate equation

For thin plates like metal sheets, the Kirchhoff–Love hypothesis is assumed additionally to H1–H4.

H5. Lines normal to the mid-surface are, after deformation, again normal to the deformed mid-surface.

It states that normal vectors of the original plate stay perpendicular to the mid-surface of the deformed
plate. This means that no shearing occurs, i.e., the rotations β from the Reissner–Mindlin plate equation
can be eliminated by the gradient of the vertical deflection w of the mid-surface. Note that ∇w is
the linearization of the rotated normal vector of the plate, cf. Figure 2.2 (the linearization of the
deformed normal vector is given by ν = ν̂ − ∇w + O(∥∇w∥2)). Eliminating β from (3.1.7) leads to
the Kirchhoff–Love plate equation, which is of the form of a biharmonic problem. Assuming clamped
boundary conditions it reads: Find w ∈ H2

0 (Ω) such that for all v ∈ H2
0 (Ω)∫

Ω

C∇2w : ∇2v dx =

∫
Ω

f v dx. (3.2.1)

Like for the Euler–Bernoulli beam, the thickness parameter t does not enter the equation. The problem
is well-posed for w ∈ H2

0 (Ω) and reads in strong form{
div(div(C∇2w)) = f in Ω,

w = ∂w
∂n = 0 on ∂Ω.

(3.2.2)

In addition to clamped boundary conditions, free and simply supported boundary conditions can also
be prescribed. The general case in strong form reads:

div(div(σ)) = f, σ := C∇2w in Ω, (3.2.3a)

w = 0,
∂w

∂n
= 0 on Γc, (3.2.3b)

w = 0, σnn = 0 on Γs, (3.2.3c)

σnn = 0,
∂σnt

∂t
+ div(σ) · n = 0 on Γf , (3.2.3d)

JσntKx = σn1t1(x)− σn2t2(x) = 0 for all x ∈ VΓf
, (3.2.3e)

where the boundary Γ = ∂Ω splits into clamped, simply supported, and free boundaries Γc, Γs, and Γf ,
respectively. VΓf

denotes the set of corner points where the two adjacent edges belong to Γf . Here, n

and t denote the plate boundary’s outer normal and tangential vector. Physically, σnn := n⊤σn is the
normal bending moment, ∂t(t

⊤σn)+n⊤div(σ) the effective transverse shear force, and σnt := t⊤σn the
torsion moment. Further, the shear force Q is given by Q = −div(σ).

Due to the increased regularity of w, point forces f are well-defined for dimensions 2 and 3 as then
H2(Ω) ↪→ C0(Ω) by Sobolev inequalities. In 2D H1(Ω) ̸↪→ C0(Ω), the Dirac delta is a distribution
in H−1−ε(Ω), such that for Reissner–Mindlin plates, we cannot prescribe a point force. In 1D this is
valid as then H1(Ω) ↪→ C0(Ω). Another advantage is that the problem of shear locking is circumvented,
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and no boundary layers occur. However, to solve the Kirchhoff–Love plate equation with a conforming
Galerkin method in the elliptic setting, however, would require H2-conforming finite elements, where the
derivatives have to be also continuous over elements, i.e. elements which are globally in C1(Ω).

Remark 3.2.1 (Convergence to 3D elasticity) Although it makes sense that the plate equations ap-
proximate the 3D elasticity problem for small thickness, the question of convergence arises. In [6] a
rigorous proof was given that there holds under sufficient regularity assumptions on the domain Ω that

∥u3d − u
(1,1,2)
RM ∥ = O(t

1
2 ), ∥u3d − u

(1,1,2)
KL ∥ = O(t

1
2 ), (3.2.4)

where u3d denotes the full 3D computation and u
(1,1,2)
RM , u

(1,1,2)
KL the Reissner–Mindlin and Kirchhoff–Love

plate solutions where a quadratic instead of a constant ansatz for the vertical deflection has been made,
u3 = w(x, y) + z2W (x, y), cf. (3.1.2).

3.3 Hellan–Herrmann–Johnson (HHJ) method for Kirchhoff–
Love plates

For ease of presentation, we assume clamped boundary conditions, such that the plate equation reads{
div(div(C∇2w)) = f, in Ω,

w = ∂w
∂n = 0 on ∂Ω.

(3.3.1)

The construction of general H2-conforming finite elements is a difficult task as they have to be
globally C1 instead of being “just” continuous over interfaces. Such elements include the Argyris and
Bell triangles or the Bogner–Fox–Schmit quadrilateral. The Hsieh–Clough–Tocher element falls in the
category of so-called macro-elements, where one triangle is divided into three smaller ones. The famous
Morley triangle [22] is a nonconforming H2 finite element, where the normal derivative is used as a degree
of freedom at the edges’ mid-points.

The HHJ method overcomes the issue of C1-conformity by introducing the linearized moment tensor

σ := C∇2w (3.3.2)

as an additional tensor field leading to a mixed saddle point problem: Find (w,σ) ∈ H1
0 (Ω)×H(divdiv,Ω)

such that for all (v, τ ) ∈ H1
0 (Ω)×H(divdiv,Ω)∫

Ω

C−1σ : τ dx+ ⟨div(τ ),∇w⟩H(curl)∗×H(curl) = 0, (3.3.3a)

⟨div(σ),∇v⟩H(curl)∗×H(curl) = −
∫
Ω

fv, (3.3.3b)

where C−1σ = 1+ν
E (σ − ν

1+ν tr(σ)I) = 1
E ((1 + ν)σ − ν tr(σ)I) is the inverted plate material (3.1.6).

Due to the relation ∇H1 ⊂ H(curl), the duality pairing above is well defined. With the Hellan–
Herrmann–Johnson stress finite elements (A.1.21) for σ and Lagrange finite elements for the vertical
deflection the discrete problem reads: Find (wh,σh) ∈ Uk+1

h,0 ×Mk
h such that for all (vh, τh) ∈ Uk+1

h,0 ×Mk
h

∫
Ω

C−1σh : τh dx+ ⟨div(τh),∇wh⟩H(curl)∗×H(curl) = 0, (3.3.4a)

⟨div(σh),∇vh⟩H(curl)∗×H(curl) = −
∫
Ω

fvh, (3.3.4b)

with the duality pairing defined as in (A.1.20).

Theorem 3.3.1 Problems (3.3.3) and (3.3.4) are uniquely solvable.
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Theorem 3.3.2 (Comodi [11]) Let (σ, w) be the solution of (3.3.3), (σh, wh) ∈ Mk
h × Uk+1

h,ΓD
, with k

a non-negative integer, the solution of (3.3.4) and w̃ ∈ Hk+3(Ω) ∩H2
0 (Ω) the solution of (3.3.1). Then

∥σ − σh∥L2 + ∥w − wh∥H1 ≤ chk+1 (|w̃|Hk+2 + |w̃|Hk+3) , (3.3.5)

∥w − wh∥L2 ≤ chk+2 (|w̃|Hk+2 + |w̃|Hk+3) . (3.3.6)

Exercise 3.3.3 The Ciarlet–Raviart method for Kirchhoff–Love plates uses that divdiv∇2w = ∆2w is
the bi-Laplace and defines σ = ∆u as an additional scalar field. Derive the weak formulation for clamped
plates and solve the biharmonic plate equation.

Exercise 3.3.4 How can the other boundary conditions be incorporated for the HHJ method? What
changes are needed to incorporate different boundary conditions for the Ciarlet–Raviart method?

3.4 TDNNS Tangential-displacement normal-normal stress el-
ements for Reissner–Mindlin plates

As we have observed in Section 2.2 and Section 3.1, the appearance of the rotation field β yields possible
shear locking. Discretizing w and β both with Lagrange finite elements does not mimic the continuous
property that the gradient ofH1-functions is inH(curl) (or in L2 in 1D),∇H1 ⊂ H(curl), but∇wh ⊈ Uk

h .
If we discretize the rotations β with H(curl)-conforming Nédélec elements N , we obtain the relation
∇wh ⊂ N such that the constraint ∇wh = βh can be fulfilled in the discrete case. The gradient of an
H(curl) function needed for the bending energy, however, is not square-integrable and thus the linearized
moment stress tensor σ is introduced, leading to the clamped Reissner–Mindlin problem: Find (w,σ, β) ∈
H1

0 (Ω)×H(divdiv,Ω)×H0(curl,Ω) such that for all (v, τ , δ) ∈ H1
0 (Ω)×H(divdiv,Ω)×H0(curl,Ω)∫

Ω

C−1σ : τ dx+ ⟨div(τ ), β⟩H(curl)∗×H(curl) = 0, (3.4.1a)

⟨div(σ), δ⟩H(curl)∗×H(curl) −
κG

t2

∫
Ω

(∇w − β) · (∇v − δ) dx = −
∫
Ω

fv. (3.4.1b)

The first equation states that σ = Cε(β) and the second is the Reissner–Mindlin plate equation.
With (A.1.1), (A.1.21), and (A.1.6) the discretized problem reads: Find (wh,σh, βh) ∈ Uk+1

h,0 ×Mk
h ×

N k
II,0 such that for all (vh, τh, δh) ∈ Uk+1

h,0 ×Mk
h ×N k

II,0∫
Ω

C−1σh : τh dx+ ⟨div(τh), βh⟩H(curl)∗×H(curl) = 0, (3.4.2a)

⟨div(σh), δh⟩H(curl)∗×H(curl) −
κG

t2

∫
Ω

(∇wh − βh) · (∇vh − δh) dx = −
∫
Ω

fvh. (3.4.2b)

Formulation (3.4.2) is called the TDNNS method for Reissner–Mindlin plates [26].
Note that the same duality pairings in (3.3.3) and (3.4.1) (respectively (3.3.4) and (3.4.2)) are used

as ∇H1 ⊂ H(curl). Due to the De’Rham complex, this relation is inherited by the discrete counterparts.
Using by a change of variables the shear γ = ∇w−β ∈ H(curl) instead of the rotation β as unknown,

(3.4.1) changes to the equivalent form: Find (w,σ, γ) ∈ H1
0 (Ω) ×H(divdiv,Ω) ×H0(curl,Ω) such that

for all (v, τ , ξ) ∈ H1
0 (Ω)×H(divdiv,Ω)×H0(curl,Ω)∫

Ω

C−1σ : τ dx+ ⟨div(τ ),∇w − γ⟩H(curl)∗×H(curl) = 0, (3.4.3a)

⟨div(σ),∇v − ξ⟩H(curl)∗×H(curl) −
κG

t2

∫
Ω

γ · ξ dx = −
∫
Ω

fv. (3.4.3b)

Here we can see the close relation to the HHJ formulation for the Kirchhoff–Love plate: We obtain that
in the limit t → 0 there holds |γ| → 0 (or equivalently |∇w − β| → 0) and thus, (3.3.3) is (formally)
recovered. In [26] the auxiliary variable γ̃ := κG

t2 (∇w − β), which can be seen as a kind of normalized
shear stress, is introduced as additional unknown and equation to prove convergence independently of
the thickness parameter t, i.e., shear locking is circumvented.
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Theorem 3.4.1 [26, Theorem 4] Let (w,σ, β) ∈ H1
0 (Ω)×H(divdiv,Ω)×H0(curl,Ω) the exact solution of

(3.4.1), (wh,σh, βh) ∈ Uk+1
h,0 ×Mk

h×N k
II,0 the corresponding finite element solution, and γ̃ := κG

t2 (∇w−β),

γ̃h := κG
t2 (∇wh − βh). Then there holds the a priori estimate for 1 ≤ m ≤ k with a constant c ̸= c(t)

∥w − wh∥H1 + ∥β − βh∥H(curl) + ∥σ − σh∥Mh
+ t∥γ̃ − γ̃h∥L2 ≤ chm (∥β∥Hm+1 + ∥σ∥Hm + t∥γ̃∥Hm) .

3.5 Hybridization of HHJ and TDNNS method

One possible disadvantage of the HHJ and TDNNS method presented above is their saddle-point struc-
ture, leading to an indefinite matrix after assembling. For the HHJ method for Kirchhoff–Love plates
(3.3.4), the system matrix is of the form (

A B⊤

B 0

)(
σ
w

)
= f, (3.5.1)

where σ, w, and f represent the coefficient vectors of the finite elements σh and wh and the right-hand
side f , respectively. The displacement w can be interpreted as a Lagrange multiplier enforcing the force
balance equation −div(σ) = f . With the usage of hybridization techniques, however, a positive definite
matrix can be recovered.

For hybridization, the continuity condition of finite elements is broken and reinforced in a weak sense.
Therefore, so-called hybridization or facet spaces have to be used. Define the facet space

Γk
h := Pk(F), Γk

h,0 := {α ∈ Γk
h |α = 0 on ∂Ω}, (3.5.2)

i.e., piece-wise polynomials on the skeleton F . We equip it with the normal vector nF , such that its
functions are facet-wise two-valued, differing only in the sign. More precisely, by defining this space as
the normal-facet space

Λk
h := {αhnF |αh ∈ Γk

h} (3.5.3)

we have for αh ∈ Λk
h that αh,nT1

= −αh,nT2
. Thus, a normal-normal continuous function with zero

normal-normal trace on ∂Ω of a function σh ∈ Mdc,k
h can be achieved by the equation

0 =
∑
T∈T

∫
∂T

σh,nn αh,n ds =
∑
F∈F

∫
F

Jσh,nnK αh ds for all αh ∈ Λk
h. (3.5.4)

For the HHJ method, we break the normal-normal-continuity and denote the discontinuous stress
space by Mdc

h . More precisely, let αh ∈ Λh from the hybridization space (3.5.3). Further, αh has
to satisfy the essential boundary conditions on ΓD. Then the hybridized HHJ problem reads: Find
stress, displacement, and hybridization fields (σh, wh, αh) ∈ Mdc,k

h × Uk+1
h,0 × Λk

h,0 for all (τh, vh, ξh) ∈
Mdc,k

h × Uk+1
h,0 × Λk

h,0∫
Ω

C−1σh : τh dx+ ⟨div(τh),∇wh⟩H(curl)∗×H(curl) −
∑
T∈T

∫
∂T

αh,nτh,nn ds = 0, (3.5.5a)

⟨div(σh),∇vh⟩H(curl)∗×H(curl) =

∫
Ω

f vh dx, (3.5.5b)

−
∑
T∈T

∫
∂T

ξh,nσh,nn ds = 0, (3.5.5c)

The Lagrange multiplier αh enforces in equation (3.5.5c) the normal-normal continuity of σh and
the boundary condition. Combining the surface terms in (3.5.5a), one observes that αh has the physical
meaning of the normal derivative of the displacement ∂wh

∂n ≈ αh,n.

Exercise 3.5.1 Incorporate and test the different boundary conditions for the mixed and hybrid mixed
HHJ method for Kirchhoff–Love plates.
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As for σh and αh the same polynomial order is used, the hybridized system (3.5.5) is equivalent to

the original one (3.3.4). However, the discontinuous stress σh ∈ Mk,dc
h does not have any coupling dofs

and thus, one can use static condensation to eliminate it at the element level, reducing the number of
total dofs drastically for the final system, and making it symmetric and positive definite again

(
A B⊤

B 0

) σ(
w
α

) =

(
0
f

)
,

σ = −A−1B⊤
(
w
α

)
, −BA−1B⊤

(
w
α

)
= f.

(3.5.6)

From the first equation, σ can be explicitly expressed in terms of w and α. This identity is inserted
into the second equation, leading to the Schur-complement matrix −BA−1B⊤. Note that A is a block
diagonal matrix and thus cheap to invert. Regarding the TDNNS method, αh corresponds to the normal
component of the rotations, αh,n ≈ βh,n.

Exercise 3.5.2 The Föppl–von Kármán equations reading

Et3

12(1− ν2)
∆2w − t

2∑
i,j=1

∂

∂xj

(
σij

∂w

∂xi

)
= P,

divσ = 0,

are used to simulate large deformations for thin plates. Here ∆2w denotes the bi-Laplace and P a volume
force. In the derivation, the initial stress-strain relation also contains the quadratic terms of the vertical
deflection σ = Cε = C

(
ε(u) + 0.5∇w ⊗ ∇w

)
, u = (ux, uy, w) with ux, uy the horizontal displacements.

Show that with the Airy stress function φ with σ11 = ∂2φ
∂x2

2
, σ22 = ∂2φ

∂x2
1
, and σ12 = − ∂2φ

∂x1∂x2
the equations

become

Et3

12(1− ν2)
∆2w − t [φ,w] = P, ∆2φ+

E

2
[w,w] = 0,

with [u, v] := cof(∇2u) : ∇2v = ∂2u
∂x2

2

∂2v
∂x2

1
+ ∂2u

∂x2
1

∂2v
∂x2

2
− 2 ∂2u

∂x1∂x2

∂2v
∂x1∂x2

. Derive the weak formulation for

clamped boundary conditions w = ∂w
∂n = φ = ∂φ

∂n = 0.

Exercise 3.5.3 Reformulate the Föppl–von Kármán equations in terms of the Hellan–Herrmann–Johnson
method such that Lagrangian finite elements can be used for w and φ.
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Chapter 4

Differential geometry and curvature
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One fundamental difference between plates and general shell structures is that plates are non-curved
(in the initial configuration). This entails the usage of standard (Euclidean) derivatives and components
based on the Euclidean basis, which does not change spatially. For example, the normal vector of a plate

S ⊂ R2 × {0} is ν =
(
0 0 1

)⊤
and thus ∇ν = 0. To define tangential and normal components of

curved surfaces, however, the basis vectors depend on the position on the surface. To define and treat
objects like surface derivatives, we need tools from differential geometry. If the surface is not smooth,
e.g., if we use an affine triangulation consisting of piece-wise flat triangles to approximate a curved
surface, additional questions arise in discrete differential geometry (DDG). Literature including classical,
modern, and discrete differential geometry are e.g. [13, 16, 29, 4, 31, 20, 23].

Remark 4.0.1 Different approaches/dialects are used in differential geometry. For example, defining
more or less all objects in terms of coordinates, or using more coordinate-free notation. We will use a
notation comparable to tangential differential calculus (TDC), where differential operators are defined in
a more compact notation. The notation of curvilinear coordinates is widely used. Another language used
in differential geometry is exterior calculus, which is more “abstract” than the others.

As shells are two-dimensional objects embedded in the three-dimensional Euclidean space, we will use
in this section the concept of sub-manifolds embedded in Rn, leading to extrinsic differential geometry.

4.1 (Sub-) Manifolds

For completeness, we recap the definition of a smooth submanifold.

Definition 4.1.1 Let 0 ≤ k < n be an integer. A differentiable function φ : ω → Rn with ω ⊂ Rk open
is called an embedding if ∇φ ∈ Rn×k has full rank, i.e., ∇φ is injective. S ⊂ Rn is a k-dimensional
submanifold of Rn if for every x ∈ S there exists an embedding φ : V → U from V ⊂ Rk open to an
open neighborhood U ⊂ Rn of x such that S ∩ U = φ(V ). For n = 3 and k = 2 we call S a surface and
for k = 1 a curve.

In the following, we assume w.l.o.g. that the manifold S can be parameterized with a single embedding
and note that the results can easily be extended by using an atlas, i.e., a set of embeddings covering
the whole manifold. Several ways exist to define the tangent space of S at a point p ∈ S. We use the
embedding (the definition is, in fact, independent of the chosen embedding).

Definition 4.1.2 Let φ : Rk → S be an embedding such that p ∈ S is an interior point of the range of
φ. Then the tangent space at p ∈ S is defined by

TpS := ∇φ(q)Rk := {∇φ(q)η ∈ Rn | η ∈ Rk}, p = φ(q) (4.1.1)

and the tangent bundle by TS :=
⊔

p∈S TpS :=
⋃

p∈S{p} × TpS.
We focus on n−1 dimensional submanifolds such that a unique normal vector (up to orientation) exists.

Definition 4.1.3 Let S be an n − 1 dimensional submanifold of Rn. A function ν : S → Sn−1 is a
normal vector field of S if for all p ∈ S there holds ν(p) ⊥ TpS. A surface S is called orientable if a
globally continuous normal vector field exists ν : S → Sn−1. The projection operator onto the tangent
bundle PS : Rn → TS is defined by PS := I − ν ⊗ ν.

There are two, equivalent, ways to define derivatives of functions f : S → R on the surface: Using
the embedding going back to Rk, where we know how to differentiate, or to use the surrounding space
Rn computing the classical derivative and projecting the result back onto the surface.

Definition 4.1.4 Let S ⊂ Rn be a smooth k-dimensional sub-manifold, p ∈ S, f : S → R and φ : Rk →
S an embedding. Then we call the function f differentiable, f ∈ C1(S), at p ∈ S, w.l.o.g. φ(0) = p, if

∇Sf(p) := ∇((f ◦ φ)(0))(∇φ(0))† (4.1.2)

is differentiable in classical sense and call ∇Sf the tangential or surface gradient of f . Here, (∇φ)† ∈
Rk×n denotes the Moore–Penrose pseudo-inverse of ∇φ ∈ Rn×k.

The Moore–Penrose pseudo-inverse A† of a rank k matrix A ∈ Rn×k is given by A† = (A⊤A)−1A⊤.
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The definition is independent of the particular embedding φ and can be extended easily to vector-
valued functions f : S → Rn.

For smooth manifolds we can define an ε-tube around it, where we can then extend functions. We
focus on surfaces in 3D.

Theorem 4.1.5 Let ω ⊂ R2 be a domain and let φ ∈ C3(ω,R3) be an embedding. Then there exists
ε > 0 such that the mapping Θ : Ω → R3, Ω := ω × (−ε/2, ε/2) defined by

Θ(x, z) := φ(x) + zν(x) for all (x, z) ∈ Ω (4.1.3)

is a C2-diffeomorphism from Ω onto Θ(Ω) and det(τ1, τ2, ν) > 0 in Ω, where τi =
∂Θ
∂xi

and ν = τ1×τ2
∥τ1×τ2∥2

.

Proof: See e.g., [10, Theorem 4.1-1]. 2

The requirement on the thickness ε depends on the curvature of the surface.
With Theorem 4.1.5 and the projection PS for given f : S → R an extension F : R3 → R can be

defined such that F |S = f , e.g., by extending it constantly in ν direction. With this at hand, we define
the tangential derivative as

∇Sf = PS∇F, (4.1.4)

which is independent of the choice of the extension F . Note that (4.1.4) is an equivalent definition
to (4.1.2). For vector valued functions f : S → R3 the surface gradient via extension is given by
∇Sf = ∇FPS .

Definition 4.1.6 The surface divergence of a vector-valued function u ∈ C1(S,Rn) is defined by divS(u) :=
tr(∇Su).

With the projection operator PS onto the tangent space at hand we can define the covariant surface
derivative.

Definition 4.1.7 Let S ⊂ Rn be a smooth n− 1-dimensional sub-manifold, PS the projection onto the
tangent space, and f : S → Rn a differentiable vector field. The covariant surface gradient of f is defined
by

∇cov
S f := PS∇Sf (4.1.5)

or via extension F : Rn → Rn as ∇cov
S f := PS∇SFPS . The Riemannian Hessian of f ∈ C2(S) is given

by ∇2
Sf := ∇cov

S ∇Sf .

Note, that for a vector field f on S there holds ν⊤∇cov
S f = 0 and ∇cov

S f ν = 0, but in general ν⊤∇Sf ̸= 0
(only ∇Sf ν = 0).

4.1.1 Shape operator and fundamental forms

The following fundamental forms are introduced to measure distances and curvatures on manifolds.

Definition 4.1.8 Let S be a surface with normal vector ν and v, w ∈ TS. Then the first, second, and
third fundamental forms are given by

I(v, w) := ⟨v, w⟩, (4.1.6a)

II(v, w) := ⟨∇Sν v, w⟩, (4.1.6b)

III(v, w) := ⟨∇Sν v,∇Sν w⟩, (4.1.6c)

where ⟨·, ·⟩ denotes the Euclidean scalar product in R3 restricted on the tangent space.

∇Sν is the Weingarten tensor, which is symmetric and acts on tangent vectors. It induces the shape
operator S : TS → TS : X 7→ ∇SνX. It is further referred to as the curvature tensor because the
second derivatives of the underlying embedding of the shell contain all the curvature information. The
sign convention is not unique, it is also possible to define −∇Sν as the Weingarten tensor.

29



4.2 Mapping between surfaces

Next, we consider two surfaces Ŝ and S connected diffeomorphically by Φ : Ŝ → S. In the context of
shells, Ŝ and S correspond to the initial and deformed mid-surface of the shell, respectively, and Φ will be
the deformation of the mid-surface. We are interested in how the tangential and normal vectors and the
fundamental forms can be expressed (pulled-back) in terms of vectors living on Ŝ and the deformation
Φ.

4.2.1 Pull back of vectors

We start with a tangent vector v ∈ TpS. By definition and the chain rule we obtain that ∃q, η ∈ R2 :

Φ◦φ(q) = p, φ(q) = p̂, v = ∇(Φ◦φ)(q)η = (∇ŜΦ)(p̂)(∇φ)(q)η = (∇ŜΦ)(p̂)v̂, where v̂ = (∇φ)(q)η ∈ Tp̂Ŝ.
Thus v = (∇ŜΦ)(p̂)v̂, or in terms of vector fields v : S → TS, v = (∇ŜΦ)v̂, v̂ : Ŝ → T Ŝ.

We observe that the tangent vectors of Ŝ get explicitly mapped to S by the push forward ∇ŜΦ =: FŜ ,
which we will denote in the following by FŜ , having the physical meaning of the surface deformation
gradient later in the context of shells.

The cofactor matrix cof(A) is well-defined for all matrices A ∈ Rn×n. If A is regular there holds the
identity cof(A) = detAA−⊤. As FŜ interpreted as 3 × 3 matrix has only rank 2, we will make use of
the following results.

Lemma 4.2.1 Let A ∈ R3×3 with rank(A) = 2. Then there holds

A⊤ cof(A) = 0.

Proof: As the set of regular matrices GL(3) is dense in the set of all matrices there exists for all
A ∈ R3×3 and ε > 0 some Aε ∈ GL(3) such that ∥Aε − A∥F < ε. Therefore, with continuity of the
determinant, there holds

A⊤ cof(A) = lim
ε→0

A⊤
ε cof(Aε) = lim

ε→0
det(Aε) = 0.

2

Lemma 4.2.1 states that the range of cof(A) is exactly the kernel of A for a rank two matrix, such
that we can describe the transformation of normal vectors.

Lemma 4.2.2 Let Ŝ be a surface with normal vector field ν̂. For the mapped surface S := ϕ(Ŝ),
ϕ : Ŝ → R3 a diffeomorphism, let ν be the corresponding normal vector. Then, with FŜ := ∇Ŝϕ

ν ◦ ϕ =
cof(FŜ)ν̂

∥ cof(FŜ)ν̂∥2
=

cof(FŜ)ν̂

∥ cof(FŜ)∥F
. (4.2.1)

Proof: Let p ∈ S and η ∈ TpS be arbitrary. Then with η ◦ ϕ = FŜ η̂ for some η̂ ∈ T Ŝ

η ◦ ϕ · ν ◦ ϕ =
1

∥ cof(FŜ)ν̂∥2
η̂⊤F⊤

Ŝ cof(FŜ)ν̂
Lemma 4.2.1

= 0.

2

4.2.2 Pull back of fundamental forms

The fundamental forms on the mapped surface S = Φ(Ŝ) can directly be pulled-back, with v̂, ŵ ∈ T Ŝ
via

Φ∗I(v̂, ŵ) = ⟨∇ŜΦ v̂,∇ŜΦ ŵ⟩, (4.2.2a)

Φ∗II(v̂, ŵ) = ⟨(∇Sν) ◦ Φ∇ŜΦ v̂,∇ŜΦ ŵ⟩, (4.2.2b)

Φ∗III(v̂, ŵ) = ⟨(∇Sν) ◦ Φ∇ŜΦ v̂, (∇Sν) ◦ Φ∇ŜΦ ŵ⟩. (4.2.2c)

We will neglect the Φ∗ for ease of presentation.
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4.3 Curvature

Let S be a surface in R3 throughout this section. We discuss the types and computation of different
curvatures of the surface.

Definition 4.3.1 Let κ1, κ2 be the two eigenvalues of the Weingarten tensor ∇Sν not corresponding
to the eigenvector ν. They are called the principal curvatures and the corresponding eigenvectors the
principal curvature directions. The mean and Gauss curvature, respectively, are given by the mean and
product of the eigenvalues, H = 1

2 (κ1 + κ2) and K = κ1κ2.

The mean curvature can directly be obtained from the trace of the Weingarten tensor, H = 1
2 tr(∇Sν),

for the Gauss curvature, however, we cannot take the determinant, which is zero. The cofactor matrix
is used instead.

Lemma 4.3.2 Let A ∈ R3×3
sym be a rank 2 matrix with kernel v ∈ R3, Av = 0, such that ∥v∥2 = 1. Then

the product of the two non-zero eigenvalues is given by cof(A)vv. Especially, there holds for the Gauss
curvature K = cof(∇Sν)νν .

Proof: Entry cof(A)ij is the determinant of the 2 × 2 sub-matrix where the ith row and jth column
is neglected. Thus, cof(A)vv is the determinant of the 2 × 2 matrix when deleting the zero row and
column. 2

Remark 4.3.3 Another possibility the compute the Gauss curvature is to regularize the Weingarten
tensor, K = det(∇Sν + ν ⊗ ν).

Depending on the Gauss curvature, four types of surfaces can (locally) be identified. We call a surface
at point p ∈ S

• elliptic, if K(p) > 0,

• hyperbolic, if K(p) < 0,

• parabolic, if K(p) = 0 and κ1 ̸= 0 or κ2 ̸= 0,

• flat (planar), if K(p) = κ1(p) = κ2(p) = 0.

4.4 Approximated surfaces and discrete curvature

We discuss the computation of the curvature if only an approximation of the surface is given. For a
quick introduction to finite elements on surfaces, see Appendix A.2.

For a triangulation T approximating S we assume that it is densely inscribed, i.e., the vertices of T
lie on S. If the triangulation is not affine, but polynomial, it will be curved for better approximation. We
say a triangulation is curved of order k if for all T ∈ T there exists a function ΦT ∈ Pk(T̂ ,R3) mapping
the reference triangle to T , T = ΦT (T̂ ). There are several ways to curve the triangulation appropriately.
The projection-based interpolation uses the dofs of Lagrangian elements, first determining the edge dofs
and then the inner dofs to obtain an L2- (or H1-) best approximation of S. Note that T is globally
continuous but in general not differentiable.

For an affine triangulation T the discrete outer normal vector ν is piece-wise constant and thus,
∇T ν|T = 0 for all T ∈ T , where we used the notation ∇T to emphasize that we are on a triangulated
surface. Moreover, the normal vector may jump over the interfaces, see Figure 4.1. Hence, the discrete
Weingarten tensor can at best be a distribution.
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∢(νL, νR)

TL TR

Figure 4.1: Jump of normal vector over two affine elements in 2D and 3D.

Definition 4.4.1 Let T be a triangulation of order k of a surface S and E the corresponding skeleton. We
define the distributional Weingarten tensor acting on co-normal–co-normal continuous HHJ functions,
σ ∈ Mk

h,0 by

⟨∇T ν,σ⟩ =
∑
T∈T

∫
T

∇T ν|T : σ ds+
∑
E∈E

∫
E

∢(νL, νR)σµµ dl, (4.4.1)

where ∢(a, b) := arccos
(

a·b
∥a∥2∥b∥2

)
denotes the angle of two vectors and νL, νR the normal vectors on the

two triangles TL, TR sharing the same edge E.

Remark 4.4.2 In the case of a polygon (affine) triangulation T , only the edge terms in (4.4.1) remain,
where the angle of the normal vector jump is computed. This is in common with discrete differential
geometry, where the dihedral angle is also used as part of the curvature computation.

Note that for a high-order surface approximation, the jump term becomes less important regarding
curvature information; however, it is crucial for numerical stability and obtaining optimal convergence
rates. We also define the lifted Weingarten tensor for visualisation purposes, where a discrete L2-Riesz
representative is computed.

Definition 4.4.3 Let T be a triangulation of order k of the surface S. Then the lifted curvature κh ∈
Mk

h,0 is given as the solution of∫
T
κh : σh ds = ⟨∇T ν,σh⟩, for all σh ∈ Mk

h,0. (4.4.2)
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Chapter 5

Shells
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Figure 5.1: Description of shell structures by its mid-surface S and normal vector ν. Every point X can
be represented in the form X = x+ zν. (left) Flat structure. (right) Curved structure.

The appearance of shell structures, where one direction is significantly smaller than the others, is
common in nature and technology. The scaling ranges from small, like cell membranes, to large, such
as parts of cars and aeroplanes. Like for beams and plates, models were developed where only the mid-
surface of the structure gets discretized and assumptions are made to “neglect” the thin direction, i.e., a
dimension reduction. Koiter [17] derived consistent equations for shells from continuum mechanics, and
Naghdi [24] proposed shell models of arbitrary order. Another idea from Cosserat [12] directly starts
with a 2D model and postulates the balance equations. Therein, the shell is described by its mid-surface
and an additional independent director field on it, called geometrically exact shell models.

The behavior of shell models should coincide with the full model, especially in the limit t → 0, when
the thickness tends to zero. Besides asymptotic analysis in the thickness parameter t the derivation of
beam, plate, and shell models from 3D elasticity has also been discussed via Γ-convergence (see e.g. [18]).

5.1 Shell description

Looking at a plate structure as depicted in Figure 5.1 (left), one can describe every point X in it by its
mid-surface ω and going along the normal vector, X = x+zν. Therefore, the question arises whether we
can describe every thin-walled structure in this form. The answer is positive if the structure is smooth
and “thin” enough. If the thickness t is smaller than ε of Theorem 4.1.5, it justifies to split a shell Ω
into its mid-surface S and the corresponding normal vector ν

Ω = {X = x+ z ν(x) |x ∈ S, z ∈ [−t/2, t/2]} , (5.1.1)

as depicted in Figure 5.1 (right).

Definition 5.1.1 We call a surface S with its normal vector field ν : S → S2 the initial configuration
of a shell and (S, ν̃) with a unit vector field ν̃ : S → S2, also called director, a configuration of a shell.

The director ν̃, which does not have to be perpendicular to the shell surface, is used to model shearing.

Definition 5.1.2 Let ν̃ : S → S2 a director field. The shear form σν̃ : TS → R is given for all p ∈ S by

(σν̃)p : TpS → R, v 7→ ⟨ν̃(p), v⟩. (5.1.2)

Definition 5.1.3 Let (Ŝ, ν̂) be the initial configuration of a shell. A deformation Φ = (ϕ, ν) of Ŝ is

Φ : Ŝ × [−t/2, t/2] → R3, (x, z) 7→ ϕ(x) + zν(x), (5.1.3)

where ϕ is the deformation of the mid-surface and ν : Ŝ → S2 a differentiable unit vector field. We call
S := ϕ(Ŝ) together with ν̃ := ν ◦ ϕ−1 a deformed configuration of the shell.

Analogously to (4.2.2) we can pull back the generalized fundamental and shear forms from the de-
formed shell configuration to the initial shell mid-surface, v̂, ŵ ∈ T Ŝ,

Φ∗IIν̃(v̂, ŵ) :=
1

2

(
⟨(∇S ν̃) ◦ Φ∇ŜΦ v̂,∇ŜΦ ŵ⟩+ ⟨∇ŜΦ v̂, (∇S ν̃) ◦ Φ∇ŜΦ ŵ⟩

)
, (5.1.4a)

Φ∗IIIν̃(v̂, ŵ) := ⟨(∇S ν̃) ◦ Φ∇ŜΦ v̂, (∇S ν̃) ◦ Φ∇ŜΦ ŵ⟩, (5.1.4b)

Φ∗σν̃(·) := σν̃(∇ŜΦ ·). (5.1.4c)
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We denote by Î, ÎI, and ˆIII the fundamental forms of the initial shell configuration. The matrix
representations of the (pull-backed) forms are given, FŜ := ∇ŜΦ, by

Î =̂P⊤
Ŝ PŜ = PŜ , ÎI ν̂ =̂∇Ŝ ν̂,

ˆIII ν̂ =̂∇Ŝ ν̂∇Ŝ ν̂, σν̂ ≡ 0, Φ∗I =̂F⊤
Ŝ FŜ ,

Φ∗IIν̃ =̂ sym(F⊤
Ŝ (∇S ν̃) ◦ ΦFŜ), Φ∗IIIν̃ =̂F⊤

Ŝ (∇S ν̃) ◦ Φ⊤(∇S ν̃) ◦ ΦFŜ , Φ∗σν̃ =̂F⊤
Ŝ ν̃ ◦ Φ.

(5.1.5)

5.2 Shell models

We assume that the deformation in Definition 5.1.3 is of the following form

Φ : Ŝ × [−t/2, t/2] → R3, (x, z) 7→ ϕ(x) + zR(ν̂(x), ϕ(x)), (5.2.1)

where ϕ is the deformation of the mid-surface and R : S2 × S → S2 can be understood as a nonlinear
rotation of the normal vector. To simplify notation, we neglect the x and ϕ dependency of R. We denote
the projection onto the normal direction by Pz := P⊥

Ŝ = ν̂ ⊗ ν̂.

Lemma 5.2.1 There holds for the Cauchy–Green strain tensor of full 3D elasticity, C = ∇Φ⊤∇Φ,

C = I + 2zIIR(ν̂) + z2IIIR(ν̂) +
(
σR(ν̂) ⊗ ν̂ + ν̂ ⊗ σR(ν̂)

)
+ Pz (5.2.2)

and for the undeformed Cauchy–Green tensor Ĉ = Î + 2zÎI ν̂ + z2 ˆIII ν̂ + Pz.

5.2.1 Nonlinear Naghdi shell

The Green strain tensor of the full 3D structure is given by E = 1
2

(
C − Ĉ

)
and together with the

material law of St. Venant–Kirchhoff the whole energy of the deformed shell reads

W :=
1

2

∫ t
2

− t
2

∫
Ŝ
∥E∥2C dsz dz, (5.2.3)

where, under the assumptions of Reissner–Mindlin, the material norm is of the form

∥ · ∥2C :=
E

1− ν2
(
ν tr(·)2 + (1− ν) tr(·2)

)
. (5.2.4)

Steiner’s formula [30] dsz =
(
1− 2zH + z2K

)
ds with the mean and Gauss curvature H and K yields

W =
1

2

∫
Ŝ

(∫ t
2

− t
2

∥E∥2C dz − 2H

∫ t
2

− t
2

z∥E∥2C dz +K

∫ t
2

− t
2

z2∥E∥2C dz
)
ds. (5.2.5)

Theorem 5.2.2 (Shell energy) Assume that t/L ≪ 1 (L denoting the characteristic length), ∥I −
Î∥C ≤ t, and K ≤ t, i.e., that the membrane energy and Gauss curvature are small. Then neglecting all
terms of order O(t4) yields the shell energy

W =
1

2

∫
Ŝ

(
t

4
∥I − Î∥2C +

t3

12
∥IIR(ν̂) − ÎI∥2C + tκG|σR(ν̂)|2

)
ds, (5.2.6)

where G = E
2(1+ν) and κ = 5/6 denote the shearing modulus and shear correction factor, respectively.

With the matrix representations (5.1.5) together with EŜ := 0.5(F⊤
Ŝ FŜ − PŜ) the energy reads

W =

∫
Ŝ

(
t

2
∥EŜ∥2C +

t3

24
∥ sym(F⊤

Ŝ ∇ŜR(ν̂))−∇Ŝ ν̂∥2C +
tκG

2
|F⊤

Ŝ R(ν̂)|2
)

ds. (5.2.7)

The three terms in (5.2.6) correspond to the membrane, bending, and shearing energy, cf. Figure 5.2.
Using β to parameterize the rotation, we arrived at the nonlinear Reissner–Mindlin/Naghdi shell model.
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Figure 5.2: Sketched membrane, bending, and shearing energy of a shell.

5.2.2 Linear Naghdi shell

In the following, we denote with u : Ŝ → R3 the displacement of the mid-surface such that ϕ = id + u.
Under the small strain assumption (e.g. ∇Ŝu = O(ε)), we can linearize the nonlinear shell model (5.2.7).
We start with the linearization of the normal and tangential vectors.

Lemma 5.2.3 Let Ŝ be a shell with normal vector field ν̂ and ϕ : Ŝ → R3 a diffeomorphism of the form
ϕ = id + u. For the resulting deformed shell S := ϕ(Ŝ) let ν, τ , and µ by the normal, tangent, and
co-normal vectors. Assume that ∇Ŝu = O(ε). Then the linearization of these vectors is given by

ν ◦ ϕ = ν̂ −∇Ŝu
⊤ν̂ +O(ε2), (5.2.8a)

τ ◦ ϕ = τ̂ + (I − τ̂ ⊗ τ̂)∇Ŝu τ̂ +O(ε2), (5.2.8b)

µ ◦ ϕ = µ̂+ ((I − τ̂ ⊗ τ̂)∇Ŝu−∇Ŝu
⊤)µ̂+O(ε2). (5.2.8c)

Lemma 5.2.4 There holds for the director ν̃ under the small strain assumption

ν̃ ◦ ϕ = ν̂ + β +O(ε2) (5.2.9)

where β ∈ T Ŝ denotes the (linearized) rotation vector.

Theorem 5.2.5 (Linearized Naghdi/Reissner–Mindlin shell) Under the small strain assumption
u = β = ∇Ŝu = ∇Ŝβ = O(ε) (5.2.7) simplifies to the linearized Naghdi shell energy

W lin
RM =

∫
Ŝ

(
t

2
∥ sym(∇cov

Ŝ u)∥2C +
t3

24
∥ sym(∇cov

Ŝ β +∇Ŝu
⊤∇Ŝ ν̂)∥2C +

tκG

2
|∇Ŝu

⊤ν̂ + β|2
)

ds. (5.2.10)

5.2.3 Nonlinear Koiter shell

With hypothesis (H5) and Lemma 4.2.2 the director ν̃ ◦ ϕ coincides with the normal vector on the
deformed configuration. Thus, the shearing energy is zero, and the nonlinear Koiter shell energy reads

WKL =

∫
Ŝ

(
t

2
∥EŜ∥2C +

t3

24
∥F⊤

Ŝ ∇Ŝ

(
cof(FŜ)ν̂

∥ cof(FŜ)∥F

)
−∇Ŝ ν̂∥2C

)
ds. (5.2.11)

5.2.4 Linear Koiter shell

Lemma 5.2.6 Under the small strain assumption, the linearization of (5.2.11) is given by

W lin
KL =

∫
Ŝ

(
t

2
∥ sym(∇cov

Ŝ u)∥2C +
t3

24
∥Hν̂∥2C

)
ds, (5.2.12)

where Hν̂ :=
∑3

i=1(∇2
Ŝui)ν̂i with ∇2

Ŝ denoting the surface Hessian, cf. Definition 4.1.7.

Remark 5.2.7 In the limit t → 0 in (5.2.10) we obtain β = −∇Ŝu
⊤ν̂ recovering (5.2.12) as then

∇cov
Ŝ β +∇Ŝu

⊤∇Ŝ ν̂ = −Hν̂ .

5.3 Discretization of Koiter/Kirchhoff–Love shells

This seminar considers only the Koiter shell model, where no shearing appears. To overcome the necessity
of C1-finite elements, the mixed HHJ method is applied. Further, as the underlying shell geometry of
the initial or deformed configuration is in general not C1 (only continuous), we use the distributional
Weingarten tensor from Definition 4.4.1.
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Figure 5.3: Normal, edge tangential and co-normal vectors.

5.3.1 HHJ for nonlinear Koiter shells

We start with shell energy (5.2.11), the notation ν ◦ ϕ =
cof(FŜ)ν̂

∥ cof(FŜ)∥F
, and material law (5.2.4)

WKL(uh) =

∫
Ŝ

(
t

2
∥EŜ∥2C +

t3

24
∥ sym(F⊤

Ŝ ∇Ŝ(ν ◦ ϕ))−∇Ŝ ν̂∥2C
)

ds. (5.3.1)

We neglect the subscript h for the finite element functions for ease of presentation. Further, we use
e.g. ∇Ŝ instead of ∇T . For a possibly curved but not C1 triangulation T of Ŝ consisting of triangles
and quadrilaterals, we cannot use the bending energy term in (5.3.1). Instead, we use the distributional
curvature (4.4.1) for the initial and deformed configuration and define a lifting to a new unknown, the
curvature difference κdiff , according to Definition 4.4.3. The resulting three-field formulation reads

L(u,κdiff ,σ) =

∫
T

t

2
∥EŜ∥2C +

t3

24
∥κdiff∥2C ds+

∑
T∈T

∫
T

(
(F⊤

Ŝ ∇Ŝν ◦ ϕ−∇Ŝ ν̂)− κdiff
)
: σ ds

+
∑
E∈E

∫
E

(∢(νL, νR) ◦ ϕ− ∢(ν̂L, ν̂R))σµ̂µ̂ dl,

(5.3.2)

compare Figure 5.3 for the normal vector νL and νR on neighbored elements. The Lagrange parameter
σ has the physical meaning of the moment tensor, which is the energetic conjugate of the difference of
the curvatures of the deformed and initial configuration. We can eliminate κdiff if C is invertible.

Lemma 5.3.1 Three-field formulation (5.3.2) is equivalent to the two-field formulation

L(u,σ) = t

2

∫
T
∥EŜ∥2C ds−

∫
T

6

t3
∥σ∥2C−1 ds+

∑
T∈T

∫
T

(F⊤
Ŝ ∇Ŝ(ν ◦ ϕ)−∇Ŝ ν̂) : σ ds

+
∑
E∈E

∫
E

(∢(νL, νR) ◦ ϕ− ∢(ν̂L, ν̂R))σµ̂µ̂ dl, (5.3.3)

where the inverse material is given by ∥ · ∥2C−1 := 1+ν
E ( tr(·2)− ν

ν+1 tr(·)2).
Note that the thickness parameter t now also appears in the denominator. We reduced the fourth-order
minimization problem (5.3.1) to a second-order mixed saddle point problem. With some computations,
we arrive at the following Lagrange functional.

Lemma 5.3.2 For Lagrange functional (5.3.3) there holds

L(u,σ) = t

2

∫
T
∥EŜ∥2C ds−

6

t3

∫
T
∥σ∥2C−1 ds−

∫
T
(Hν◦ϕ + (1− ν̂ · ν ◦ ϕ)∇Ŝ ν̂) : σ ds

+
∑
E∈E

∫
E

(∢(νL, νR) ◦ ϕ− ∢(ν̂L, ν̂R))σµ̂µ̂ dl, (5.3.4)

where Hν◦ϕ :=
∑3

i=1(∇2
Ŝui)νi ◦ ϕ.

Remark 5.3.3 In case of a flat plane as initial configuration (5.3.4) simplifies to

L(u,σ) = t

2

∫
T
∥EŜ∥2C ds−

6

t3

∫
T
∥σ∥2C−1 ds−

∫
T
Hν◦ϕ : σ ds+

∑
E∈E

∫
E

∢(νL, νR) ◦ ϕσµ̂µ̂ dl. (5.3.5)

The resulting system is a saddle point problem, which would lead to an indefinite matrix after assembling.
To overcome this problem, we can use completely discontinuous elements for the moment tensor σ ∈ Mdc

h

and introduce a hybridization variable α ∈ Λk−1
h to reinforce the normal-normal continuity of σ.
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µR

TL TR

Figure 5.4: Angle computation in 2D and 3D: (left) Angle between νL and νR. (middle) Averaged normal
vector with normal vector ν. (right) Averaged normal vector with element normal vector µ.

{ν} {ν}n
{ν}

µL
µR

TL TR

P⊥
τE

({ν}n)

µL
µR

TL TR

Figure 5.5: Angle computation with the current averaged normal vector {ν} and the averaged normal
vector {ν}n from the previous step in 2D and 3D.

5.3.2 Computational aspects

Using the angle ∢(νL, νR) is numerically unstable if νL ≈ νR. Thus, we rewrite it in an equivalent form∑
E∈E

∫
E

∢(νL, νR) ◦ ϕ− ∢(ν̂L, ν̂R) dl =
∑
T∈T

∫
∂T

∢({ν}, ν) ◦ ϕ− ∢({ν̂}, ν̂) dl (5.3.6)

=
∑
T∈T

∫
∂T

∢({ν̂}, µ̂)− ∢({ν}, µ) ◦ ϕdl, (5.3.7)

as ∢({ν}, ν) = π
2 − ∢({ν}, µ), see Figure 5.4. Here, {ν} := 1

∥νL+νR∥2
(νL + νR) denotes the averaged

normal vector. This algebraic equivalent reformulation is numerically much more stable as the derivative
of arccos(x), arccos′(x) = − 1√

1−x2
, has singularities at x = ±1 and we expect (for the triangulation of a

smooth surface) {ν} · ν ≈ 1, whereas for {ν} · µ ≈ 0 the derivatives of arccos are well-defined.
To compute the deformed averaged normal vector {ν}◦ϕ on an edge, information of the two neighbour-

ing elements is needed at once, which would require, e.g., Discontinuous Galerkin techniques, leading to
a denser stiffness matrix. Instead, one can use the information of the last (loadstep or Newton iteration)
solution {ν}n, cf. Figure 5.5. This, and also (5.3.6), is based on the following simple observation.

Lemma 5.3.4 Let a, b ∈ R3 with ∥a∥2 = ∥b∥2 = 1. Further let c ∈ R3 with ∥c∥2 = 1 and c “lies between”
a and b, i.e., ∃t ∈ (0, 1) such that c ∈ span{t a+(1− t)b}. Then arccos(a ·b) = arccos(a ·c)+arccos(c ·b).

In three spatial dimensions, to fulfill the requirement of Lemma 5.3.4 that {ν}n “lies between” µR and
µL, i.e., to measure the correct angle, we have to project {ν}n to the plane orthogonal to the tangent
vector τ by using the orthogonal projection P⊥

τE = I − τ ◦ ϕ⊗ τ ◦ ϕ, and then re-normalize it yielding

P⊥
τE ({ν}n) :=

1

∥P⊥
τE{ν}n∥2

P⊥
τE{ν}n. (5.3.8)
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5.3.3 HHJ for linear Koiter shells

In the small deformation regime, we have the following (hybridized) HHJ method of the linear Koiter

shell formulation (5.2.12). Find (u,σ, α) ∈ Uk
h ×Mdc,k−1

h × Λk−1
h for the saddle point problem

Lhyb
lin (u,σ, α) =

∫
T

t

2
∥ sym(∇cov

Ŝ u)∥2C − 6

t3
∥σ∥2C−1 ds+

∑
T∈T

(
−
∫
T

Hν̂ : σ ds+

∫
∂T

((∇Ŝu
⊤ν̂)µ̂ + αµ̂)σµ̂µ̂ dl

)
.

5.4 Membrane locking

As the thickness t becomes small, the shell falls in one of two different categories: the membrane-
dominated (inhibited pure bending) or bending-dominated (non-inhibited pure bending) case [8]. It
relies on the specific geometry type (elliptic, hyperbolic, parabolic), prescribed boundary conditions, and
given right-hand side. For complex problems, it is therefore difficult to predict the behavior a-priori.

Membrane dominated: In the membrane-dominated regime, the loading f must be of order O(t) to
obtain a well-defined limit solution for t → 0. Dividing the shell energy (5.2.7) by t with f = tf̃ gives∫

S

1

2
∥EŜ∥2C +

t2

24
∥ sym(F⊤

Ŝ ∇ŜR(ν̂))−∇Ŝ ν̂∥2C +
κG

2
|F⊤

Ŝ R(ν̂)|2 ds−
∫
Ŝ
f̃ · u ds

and we see that the bending energy becomes less important for t → 0, the shell energy is of the form of
a perturbed problem. In this setting, no locking occurs.

Bending dominated: In the case of a bending dominated regime, the right-hand side has to be of
order O(t3) and thus after dividing through t3∫

S

1

2t2
∥EŜ∥2C +

1

24
∥ sym(F⊤

Ŝ ∇ŜR(ν̂))−∇Ŝ ν̂∥2C +
κG

2t2
|F⊤

Ŝ R(ν̂)|2 ds−
∫
Ŝ
f̃ · u ds

we observe that the membrane and shear energies are penalized to be zero in the limit t → 0. When
working with finite elements, these pure bending modes can generally only be approximated and thus
will induce non-zero parasitic membrane and/or shear modes. As a result of the penalty, the discrete
solution tends to be much smaller than expected. This is then called membrane and shear locking.

Motivated by the procedures to avoid shear locking, we will use Regge finite elements to relax the
kernel constraints by inserting the corresponding interpolation operator in the membrane energy part

∥IR,k−1
h sym(∇cov

Ŝ uh)∥2C , uh ∈ Uk
h (5.4.1)

reducing the number of constraints to the dimension of the Regge space.

5.5 Boundary layer in shells

If shear dofs are included, all plate and shell examples where transversal deflection appears, i.e., except
a pure membrane problem, boundary layers of order of the thickness O(t) may occur. These layers are
called short-range or “plate layer modes”, which are independent of the curvature and thus 1-dimensional.

For shells, additional boundary layers of magnitude O(
√
t) might appear, called simple edge effects.

In the case of hyperbolic and parabolic geometries layers of order O( 3
√
t) and O( 4

√
t), respectively, can be

induced by a singularity due to the loading, reentering corners, or change of boundary conditions. These
layers, sometimes named generalized edge effects, spread along the characteristic lines of the geometry
and might be “reflected” at boundaries. Further, they also depend on the curvature of the shell. As
a result, at most two different boundary layers must be resolved per edge to obtain reliable numerical
results.
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A.1 Function spaces and finite elements

We define different function and finite element spaces such as the classical Lagrange finite elements,
vector-valued spaces like Nédélec and Raviart–Thomas/Brezzi–Douglas–Marini, and less common matrix-
valued finite elements.

A.1.1 H1 and Lagrange elements

The Sobolev space H1(Ω) := {u ∈ L2(Ω) | ∇u ∈ L2(Ω,Rd)}, with its norm ∥u∥2H1 = ∥u∥2L2 + ∥∇u∥2L2

and semi-norm |u|H1 = ∥∇u∥L2 , is defined as the set of square-integrable functions, which have a weak

derivative. Functions in H1(Ω) have a well defined continuous trace operator tr : H1(Ω) → H
1
2 (∂Ω),

which coincides with point evaluation for continuous fields, tru = u|∂Ω for u ∈ C0(Ω). Therefore, we

can prescribe Dirichlet boundary data. H
1
2 (∂Ω) denotes the trace space of H1(Ω). It can be defined

either as the set of traces of all H1(Ω)-functions or, equivalently, as Hilbert interpolation space between
L2(∂Ω) and H1(∂Ω). Sobolev spaces Hk(Ω) can be defined, e.g. by induction.

To define a conforming finite element subspace, we consider a regular (shape regular or quasi-uniform)
triangulation1 T of Ω. Further, the set of piece-wise polynomials up to order k on the triangulation is
denoted by Pk(T ). Further, the set of edges and vertices of the triangulation are denoted by E and
V, respectively. The set of facets, which coincide with edges in 2D and faces in 3D, is given by F .
Analogously, we define e.g. Pk(F) as the set of polynomials living on the skeleton F .

The Lagrangian finite element space of order k defined by

Uk
h := Pk(T ) ∩ C0(Ω) Uk

h,0 := {uh ∈ Uk
h | truh = 0 on ∂Ω} (A.1.1)

consists of piece-wise (smooth) polynomials and is globally continuous, such that Uk
h ⊂ H1(Ω). If only

parts of the boundary are used for defining zero boundary conditions, we use the notation Uk
h,ΓD

.

Example A.1.1 Consider Ω ⊂ R2 and linear elements U1
h. A basis of U1

h is given by the set of hat-

functions φi, fulfilling φi(Vj) = δij, where Vj denotes a vertex of T . Thus uh =
∑N

i=1 αiφi ∈ U1
h.

The αi are the coefficients with respect to the basis {φi}. The corresponding functionals are given by
Ψi : u 7→ u(Vi) such that Ψi(φj) = δij. The canonical interpolation operator I1

h : C0(Ω) → U1
h is given

by uh = I1
hu =

∑N
i=0 Ψi(u)φi (Note that point-evaluation is not well-defined for H1(Ω) in dimensions 2

or higher).

To extend the hat-function basis to higher orders, several constructions exist, e.g. a hierarchical basis,
where only new basis functions are added. We define the canonical interpolation operator Ik

h : C0(Ω) →
Uk
h by the following equations in two dimensions

Ik
hu(V ) = u(V ) for all v ∈ V, (A.1.2a)∫
E

Ik
huq ds =

∫
E

uq ds for all q ∈ Pk−2(E), E ∈ E , (A.1.2b)∫
T

Ik
huq dx =

∫
T

uq dx for all q ∈ Pk−3(T ), T ∈ T , (A.1.2c)

and analogously in 3D for tetrahedra.
Mostly, the shape functions are defined on a reference triangle/tetrahedron T̂ and then mapped to

the physical elements T = Φ(T̂ ). For Lagrange elements, this is done by simple composition uh ◦Φ = ûh.

E.g., the barycentric coordinates λ̂ on the reference triangle are directly mapped to the barycentric
coordinates on the physical element by λ ◦ ϕ = λ̂. Therefore, one can define the Lagrange elements by

Uk
h = {uh ∈ H1(Ω) | for all T ∈ T ∃û ∈ Pk(T̂ ) : u|T ◦ Φ = û}.

1For simplicity, we will solely consider non-curved elements.
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A.1.2 H(curl) and Nédélec elements

The H(curl) space in two and three dimensions is defined as the set of all L2-functions, where the curl is
also in L2, H(curl,Ω) := {u ∈ L2(Ω,Rd) | curlu ∈ L2(Ω,R2d−3)}, with the norm ∥u∥2H(curl) := ∥u∥2L2 +

∥ curlu∥2L2 . In contrast to H1 only the tangential trace is available trt : H(curl,Ω) → H− 1
2 (∂Ω,R2d−3)

such that trtu = u|∂Ω · t in 2D and trtu = u|∂Ω × n in 3D, respectively, for u ∈ C0(Ω,Rd). H− 1
2 (∂Ω)

denotes the dual space of H
1
2 (∂Ω) such that e.g.

∫
∂Ω

trtu tr v ds is well defined for u ∈ H(curl,Ω) and

v ∈ H1(Ω,R2d−3). The trace theorem hints that for a conforming discretization, the finite element space
should be tangential continuous, and the normal component might jump over elements. The lowest-order
Nédélec elements of first kind in three dimensions are element-wise of the form

N 0
I (T ) = {a+ x× b | a, b ∈ R3} T ∈ T (A.1.3)

and the global finite element space is given by

N 0
I = {vh ∈ ΠT∈T N 0

I (T ) | vh is tangential continuous} ⊂ H(curl,Ω). (A.1.4)

The functionals Ψi enforcing the tangential continuity are given by the edge moment of the tangential
component, Ψi(u) =

∫
Ei

u·tEi ds, enforcing the tangential continuity. The space has 6 degrees of freedom
fitting to the six edges of a tetrahedron. The shape function corresponding to edge Ei is given by

φEi
= λE1

i
∇λE2

i
− λE2

i
∇λE1

i
, (A.1.5)

where e.g., λE1
i
denotes the barycentric coordinate of the first vertex of edge Ei.

By increasing to full polynomial space P1(T ,Rd) and adding the first tangential moments as func-
tionals, Ψi(u) =

∫
Ei
(λE2

i
−λE1

i
)u · tEi

ds, the second type Nédélec elements are obtained. The arbitrary
order k definitions are

N k
I := {vh ∈ ΠT∈T N k

I (T ) | vh is t-continuous}, N k
I (T ) := {a+ x× b | a, b ∈ Pk(T,R3)}, (A.1.6)

N k
II := {vh ∈ Pk(T ,R3) | vh is t-continuous} N k

II,0 := {vh ∈ N k
II | trtvh = 0 on ∂Ω}. (A.1.7)

There holds the relation

N 0
I ⊊ N 1

II = P1(T ,Rd) ⊊ N 1
I ⊊ N 2

II = P2(T ,Rd) ⊊ . . .

and we will use the notation N if we do not specify the kind of Nédélec elements. The canonical Nédélec
interpolant will be denoted by IN

h : C0(Ω,Rd) → N k by the following equations for

• NI elements by∫
E

IN ,k
h u · tE q dl =

∫
E

u · tE q dl for all q ∈ Pk(E), E ∈ E , (A.1.8a)∫
F

IN ,k
h ut · q ds =

∫
F

ut · q ds for all q ∈ Pk−1(F,R3) ∩ n⊥
F , F ∈ F , (A.1.8b)∫

T

IN ,k
h u · q dx =

∫
T

u · q dx for all q ∈ Pk−2(T,R3), T ∈ T , (A.1.8c)

where Pk−1(F,R3) ∩ n⊥
F denote vector-valued polynomials living in the tangent plane of F .

• NII elements by∫
E

IN ,k
h u · tE q dl =

∫
E

u · tE q dl for all q ∈ Pk(E), E ∈ E , (A.1.9a)∫
F

IN ,k
h ut · q ds =

∫
F

ut · q ds for all q ∈ RT k−2(F ), F ∈ F , (A.1.9b)∫
T

IN ,k
h u · q dx =

∫
T

u · q dx for all q ∈ RT k−3(T ), T ∈ T , (A.1.9c)

where RT k−2(F ) and RT k−3(T ) are Raviart–Thomas spaces defined in (A.1.11).
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When mapping Nédélec elements from the reference to the physical element, we must preserve the
tangential continuity. Therefore the so-called covariant transformation is used, u ◦ Φ = F−⊤û with
F = ∇Φ, as then with E = Φ(Ê)∫

E

u · t ds =
∫
Ê

û · t̂ dŝ and (curlu) ◦ Φ =

{
1
J curlx̂ û in 2D ,
1
JF curlx̂ û in 3D .

(A.1.10)

A.1.3 H(div) and Raviart–Thomas/Brezzi–Douglas–Marini elements

In a similar manner to the previous section we define H(div,Ω) := {u ∈ L2(Ω,Rd) |divu ∈ L2(Ω)},
∥u∥2H(div) = ∥u∥2L2 + ∥divu∥2L2 . Now, the normal trace is well-defined, trn : H(div,Ω) → H− 1

2 (∂Ω), such

that trnu = u|∂Ω · n for u ∈ C0(Ω,Rd). The Raviart–Thomas (RT) elements consist of polynomials of

order k where homogeneous polynomials Pk,∗(T ) := {p ∈ Pk(T ) | p =
∑m

i=1 αix
ki1
1 · · ·xkid

d ,
∑d

l=1 kil =
k, for all i ∈ {1, . . . ,m}} are added and are normal continuous

RT k(T ) := {a+ cx | a ∈ Pk(T,Rd), c ∈ Pk,∗(T )}, (A.1.11)

RT k := {vh ∈ ΠT∈T RT k(T ) | Jvh · nKF = 0 for all F ∈ F int} ⊂ H(div,Ω). (A.1.12)

Here, we defined F int := F\∂Ω as the set of all interior facets and used the notation of the normal jump
across element facets Jvh · nKF = (vh · n)|T1

+ (vh · n)|T2
= (vh|T1

− vh|T2
) · n|T1

. In the lowest-order case
k = 0 in 2D, the three dofs correspond to the three edges of the triangle, whereas in 3D there are four
dofs for the four faces of the tetrahedron.

Using the full polynomial spaces leads to Brezzi–Douglas–Marini (BDM) elements

BDMk := {vh ∈ Pk(T ,Rd) | Jvh · nKF = 0 for all F ∈ F int} ⊂ H(div,Ω),

BDMk
0 := {uh ∈ BDMk | trnuh = 0 on ∂Ω}.

(A.1.13)

If we do not distinguish between RT and BDM , we use the notation Vh.
The functionals are the moments of the normal component on edges/faces and inner moments. The

canonical interpolant IVh,k
h : C0(Ω,Rd) → V k

h is defined for

• RT elements by

ΨF (v) =

∫
F

v · n q ds for all q ∈ Pk(F ), F ∈ F , (A.1.14a)

ΨT (v) =

∫
T

v · q dx for all q ∈ Pk−1(T,Rd), T ∈ T . (A.1.14b)

• BDM elements by

ΨF (v) =

∫
F

v · n q ds for all q ∈ Pk(F ), F ∈ F , (A.1.15a)

ΨT (v) =

∫
T

v · q dx for all q ∈ N k−2
I (T ), T ∈ T . (A.1.15b)

By using the Piola transformation, u ◦Φ = 1
JF û the normal continuity is preserved during transfor-

mation T = Φ(T̂ ) and there holds with F = Φ(F̂ )∫
F

u · nds =

∫
F̂

û · n̂ dŝ, and (divu) ◦ Φ =
1

J
divx̂û. (A.1.16)

A.1.4 L2 elements and De’Rham complex

For completeness, we define the set of piece-wise polynomials of order k as L2(Ω)-conforming finite
elements

Qk
h = Pk(T ) ⊂ L2(Ω). (A.1.17)
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There holds on the continuous level in three dimensions ∇H1 ⊂ H(curl), curl(H(curl)) ⊂ H(div),
and div(H(div)) ⊂ L2. Further, on simply connected domains, the following sequence is exact. If the
domain is not simply connected, the range of one operator is still inside the kernel of the next, but in
general, the reverse does not hold.

{1} id−−−−→ H1 ∇−−−−→ H(curl)
curl−−−−→ H(div)

div−−−−→ L2 0−−−−→ 0.

The following diagram, called De’Rham complex, commutes

H1 ∩ C0 ∇−−−−→ H(curl) ∩ C0 curl−−−−→ H(div) ∩ C0 div−−−−→ L2

Ih

y IN
h

y IVh
h

y ΠL2

y
Uh

∇−−−−→ N curl−−−−→ Vh
div−−−−→ Qh

.

Remark A.1.2 We need to increase the regularity of spaces to use the canonical interpolation operators,
as e.g. point evaluation is not well-defined for H1 functions. Local L2-bounded and commuting projection
operators have been constructed without the requirement of increased regularity [2].

A.1.5 H(divdiv), TDNNS, and Hellan–Herrmann–Johnson elements

In several applications, we consider stress fields of the form σ = Cε as an additional unknown. These
fields are symmetric, σ⊤ = σ, and need to have a divergence operator defined due to the force balance
equation

−div(σ) = f.

When considering linear elasticity (1.4.5) the mixed formulation reads∫
Ω

C−1σ : τ dx+ ⟨divτ , u⟩ = 0 for all τ , (A.1.18a)

⟨divσ, v⟩ = −
∫
Ω

f v dx for all v. (A.1.18b)

The first equation forces σ = Cε(u), the second one the force balance equation, where C−1 is the
compliance tensor (1.4.3). Note that we did not specify any spaces, regularity assumptions, or the
pairings ⟨·, ·⟩ so far.

If we keep u ∈ H1(Ω,Rd) like in the standard primal setting we can define ⟨divσ, u⟩H−1×H1 =
−
∫
Ω
σ : ε(u) dx such that σ ∈ L2(Ω,Rd×d

sym) is sufficient. However, this formulation is equivalent to the
primal version and thus less interesting.

Shifting the regularity from the displacement u to the stress σ yields the requirement divσ ∈
L2(Ω,Rd) and u ∈ L2(Ω,Rd). The stress has therefore to be in the space H sym(div,Ω) := {σ ∈
L2(Ω,Rd×d

sym) |divσ ∈ L2(Ω,Rd)}, which induces a continuous normal trace, σn, compare with H(div,Ω)
in Section A.1.3. Although this is a valid choice of spaces, constructing H sym(div)-conforming finite
element spaces is tedious and requires a high polynomial degree.

Remark A.1.3 As a result, so-called weakly symmetric methods were developed, where the symmetry
of σ is broken and then enforced weakly by a Lagrange multiplier, leading to the construction of simpler
elements.

The tangential-displacement normal normal-stress continuous element method (TDNNS) shifts the
regularity half-half by requiring that u ∈ H(curl,Ω), i.e. with a tangential trace, and σ ∈ H(divdiv,Ω) :=
{σ ∈ L2(Ω,Rd×d

sym) |divdivσ ∈ H−1(Ω)}. The norm is given by ∥σ∥2HDD = ∥σ∥2L2 +∥divdivσ∥2H−1 . Then
the duality pairing ⟨divσ, u⟩H(curl)∗×H(curl) is well defined as there holds div(H(divdiv,Ω)) ⊂ H(curl)∗,
the dual space ofH(curl). To see this, we need the following characterization of the dual space ofH(curl).

Lemma A.1.4 There holds

H(curl,Ω)∗ = H−1(div,Ω) := {u ∈ H−1(Ω,Rd) |divu ∈ H−1(Ω)}. (A.1.19)
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⟨divσ, u⟩ σ u trace σ trace u
⟨divσ, u⟩H−1×H1 L2(Ω,Rd×d

sym) H1(Ω,Rd) - u∫
Ω
divσ · u dx H sym(div,Ω) L2(Ω,Rd) σn -

⟨divσ, u⟩H(curl)∗×H(curl) H(divdiv,Ω) H(curl,Ω) n⊤σn ut

Table A.1: Depending on the interpretation of pairing ⟨divσ, u⟩ different regularity assumptions on σ
and u are required yielding different well-defined traces.

Proof: For an u ∈ H0(curl,Ω) we use the regular decomposition u = z + ∇φ with z ∈ H1
0 (Ω,Rd),

φ ∈ H1
0 (Ω), and ∥z∥H1 + ∥φ∥H1 ≤ c∥u∥H(curl) to compute

∥f∥H(curl)∗ = sup
u∈H0(curl)

⟨f, u⟩
∥u∥H(curl)

≃ sup
z,φ

⟨f, z +∇φ⟩
∥φ∥H1 + ∥z∥H1

≃ sup
z

⟨f, z⟩
∥z∥H1

+ sup
φ

⟨divf, φ⟩
∥φ∥H1

= ∥divf∥H−1 + ∥f∥H−1 = ∥f∥H−1(div).

2

Now there holds for σ ∈ H(divdiv,Ω) that divσ ∈ H−1(Ω,Rd) as well as divdivσ ∈ H−1(Ω) such that
divσ ∈ H−1(div,Ω). In contrast to H sym(div), the H(divdiv) space only induces a continuous normal-
normal trace, σnn := n⊤σn, which enables the construction of simpler and lower-order finite elements,
see [28]. If the functions are more regular at a triangulation, the duality pairing can be written in terms
of element and face terms.

Lemma A.1.5 Let σ be a symmetric piece-wise smooth tensor with σnt ∈ H
1
2 (∂T ) for all T ∈ T and

normal-normal continuous. Then divσ ∈ H(curl,Ω)∗ and

⟨divσ, u⟩H(curl)∗×H(curl) =
∑
T∈T

(∫
T

divσ · u dx−
∫
∂T

σntut ds

)
=
∑
T∈T

(
−
∫
T

σ : ∇u dx+

∫
∂T

σnnun ds

)
,

(A.1.20)

where for the second identity we assumed that u ∈ H(curl,Ω) is piece-wise smooth and un ∈ H
1
2 (∂T ).

Proof: We start with a smooth test function Ψ ∈ C∞
0 (Ω,Rd) and use the definition of distributions,

split the domain into the triangles T ∈ T , and integrate by parts back on each element

⟨divσ,Ψ⟩H(curl)∗×H(curl) = −
∫
Ω

σ : ∇Ψ dx = −
∑
T∈T

∫
T

σ : ∇Ψ dx =
∑
T∈T

( ∫
T

divσ ·Ψ dx−
∫
∂T

σn ·Ψ ds
)
.

By splitting into normal and tangential components, σn ·Ψ = (σnnn+Ptσn) · (Ψnn+PtΨ) = σnnΨn +
Ptσn · PtΨ, where Pt = I − n ⊗ n is the tangential projection, yields by abbreviating e.g. Ψt := PtΨ
and reordering of the facet terms∑

T∈T

∫
∂T

σn ·Ψ ds =
∑
T∈T

∫
∂T

σnnΨn + σnt ·Ψt ds =
∑

F∈F\∂Ω

∫
F

JσnnKΨn + JσntK ·Ψt ds.

By using that σnn is continuous, JσnnK = 0, we obtain

⟨divσ,Ψ⟩H(curl)∗×H(curl) =
∑
T∈T

(∫
T

divσ ·Ψ dx−
∫
∂T

σntΨn ds

)
and

|⟨divσ,Ψ⟩H(curl)∗×H(curl)| ≤
∑
T∈T

∥divσ∥L2(T )∥Ψ∥L2(T ) + ∥σnt∥
H

1
2 (∂T )

∥Ψt∥
H− 1

2 (∂T )
≤ C(σ)∥Ψ∥H(curl).
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Thus, by density, we can extend the duality pairing formula to Ψ ∈ H(curl,Ω). The second statement
follows by integration by parts element-wise and noting that σn ·Ψ− σntΨt = σnnΨn. 2

The so-called stress or Hellan–Herrmann–Johnson finite element space is defined by

Mk
h := {σh ∈ Pk(T ,Rd×d

sym) | Jσh,nnKF = 0 for all F ∈ F int},
Mk

h,0 := {σh ∈ Mk
h |σh,nn = 0 on ∂Ω}.

(A.1.21)

Here, the normal-normal jump is given by Jσh,nnKF = σh,nn|TL
− σh,nn|TR

. The functionals of Mh in
the two-dimensional case are the normal-normal moments at the edges and moments over elements

ΨE(σ) =

∫
E

JE σnn q ds q ∈ Pk(E), E ∈ E , (A.1.22a)

ΨT (σ) =

∫
T

JT σ : F−⊤
T QF−1

T dx Q ∈ Pk−1(T,Rd×d
sym), T ∈ T , (A.1.22b)

where JE and JT are the edge and element determinants and FT the Jacobian of the transforma-
tion from the reference to the physical element, yielding the canonical interpolation operator IMh,k

h :
C0(Ω,Rd×d) → Mk

h . The edge-based shape functions can be constructed based on barycentric coordi-
nates

eij = ∇λ⊥
i ⊙∇λ⊥

j , (A.1.23)

where ⊙ is the symmetric dyadic product of the vectors a⊙b = 1
2 (ab

⊤+ba⊤) and a⊥ denotes the rotation
by π

2 . High-order versions can be constructed by setting eijq(λi − λj) where q ∈ P l(E). Interior bubble
shape functions are given by eijλkp

l(x, y), p(x, y) ∈ P l(T ). The construction of shape functions in 3D is
similar but more involved [25].

Example A.1.6 On the reference triangle the barycentric coordinates are λ1 = x, λ2 = y, λ3 = 1−x−y

and ∇λ⊥
1 =

(
0
1

)
, ∇λ⊥

2 =

(
−1
0

)
, ∇λ⊥

3 =

(
1
−1

)
. The shape functions read e12 = ∇λ⊥

1 ⊙ ∇λ⊥
2 =

− 1
2

(
0 1
1 0

)
, e13 =

(
0
1

)
⊙
(

1
−1

)
=

(
0 0.5
0.5 −1

)
, e23 =

(
−1 0.5
0.5 0

)
. With n1 =

(
−1
0

)
, n2 =

(
0
−1

)
,

n3 = 1√
2

(
1
1

)
there holds n⊤

1 e12n1 = n⊤
2 e12n2 = 0 and n3⊤e12n3 = − 1

2 . Analogously, n⊤
1 e13n1 =

n⊤
3 e13n3 = 0, n⊤

2 e13n2 = −1 and n⊤
2 e23n2 = n⊤

3 e23n3 = 0, n⊤
1 e23n1 = −1.

To preserve the normal-normal degree of freedom during transformation from the reference to the
physical element, a double Piola transformation is considered σ ◦ Φ = 1

J2F σ̂F⊤. Then∫
F

JFσnn ds =

∫
F̂

JF̂︸︷︷︸
=1

σ̂n̂n̂ dŝ.

Remark A.1.7 There does not hold Mk
h ⊂ H(divdiv,Ω) as point evaluation is not a functional in

H−1(Ω) for dimensions higher than 1. The discrepancy is by an ε > 0 as divdivMh ⊂ H−1−ε(Ω).

A.1.6 H(curlcurl) and Regge finite elements

We define the following function space for d = 2, 3

H(curlcurl,Ω) := {ε ∈ L2(Ω,Rd×d
sym) | curl((curl ε)⊤) ∈ H−1(Ω,R(3d−3)×(3d−3)

sym )}. (A.1.24)

with norm ∥ε∥2H(curlcurl) := ∥ε∥2L2+∥ curl(curl ε⊤)∥2H−1 . The differential operator curl((curl ε)⊤) is called
the incompatibility of ε and denoted by inc ε.

The Regge finite element space is given by

Rk := {ε ∈ L2(Ω,Rd×d
sym) | for all T ∈ T ε ◦ ΦT = F−⊤ε̂F−1, ε̂ ∈ Pk(T̂ ,Rd×d

sym), ε is tt-continuous },
(A.1.25)

46



which is (like for the HHJ finite element space) a slightly non-conforming subspace of (A.1.24). Here
the doubled covariant transformation is used for the mapping from the reference to the physical element.
Then the tangential-tangential component is preserved∫

E

1

JE
εtEtE dl =

∫
Ê

1

JÊ
ε̂t̂Ê t̂Ê

dl.

The canonical Regge interpolant IR,k
h : C0(Ω,Rd×d

sym) → Rk is determined by the following functionals
for a triangle

ΨE(ε) =

∫
E

1

JE
ε : p tE ⊗ tE ds p ∈ Pk(E), (A.1.26a)

ΨT (ε) =

∫
T

1

J
ε : FQF⊤ dx Q ∈ Pk−1(T,R2×2

sym). (A.1.26b)

Regge finite elements seem to be the natural space for discretizing strain and metric tensors, which
have the natural continuity condition of being tangential-tangential continuous (metric lengths and strain
stretches).

The relation between Regge and HHJ finite elements is similar to the relation between H(curl)-
conforming and H(div)-conforming elements. Elements in the HHJ space are normal-normal continuous
whereas elements in the Regge space are tangential-tangential continuous.
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A.2 Sobolev spaces and finite elements on surfaces

Before introducing finite element spaces on surfaces, we must define function spaces on manifolds and
start with the integration by parts formula. A comprehensive introduction to finite elements on surfaces
can be found, e.g. in [15].

Theorem A.2.1 (Integration by parts on manifolds) Let S by an n− 1-dimensional submanifold
of Rn with smooth boundary ∂S. Further let ν be the normal vector, µ the co-normal, and f ∈ C1(S) a
differentiable function up to the boundary. Then there holds with the mean curvature H∫

S
∇Sf ds =

∫
S
f Hν ds+

∫
∂S

fµ dl. (A.2.1)

Proof: See e.g., [15, Theorem 2.10]. 2

Definition A.2.2 The set of square-integrable functions on the surface S is defined as

L2(S) := {u : S → R | ∥u∥L2(S) < ∞}. (A.2.2)

A function f ∈ L2(S) is weakly differentiable, u = ∇Sf ∈ L2(S,Rn), if for all Ψ ∈ C∞
0 (S,Rn) there

holds ∫
S
f divS(Ψ) ds = −

∫
S
u ·Ψ ds+

∫
S
Hf Ψ · ν ds (A.2.3)

and the Sobolev space H1(S) is given by

H1(S) := {u ∈ L2(S) | ∇Su ∈ L2(S,Rn)}. (A.2.4)

For vector-valued function spaces on surfaces, we first define

L2(S, TS) := {u ∈ L2(S,Rn) |u · ν = 0}, (A.2.5a)

L2(S, TS × TS) := {σ ∈ L2(S,Rn×n) |σν = ν⊤σ = 0} (A.2.5b)

as the set of square-integrable tangential vector and matrix fields on S and then

H(div,S) := {u ∈ L2(S, TS) |divS(u) ∈ L2(S)}, (A.2.6a)

H(curl,S) := {u ∈ L2(S, TS) | curlS(u) ∈ L2(S)}, (A.2.6b)

and analogously H(divdiv,S).

The finite element spaces introduced in Section A.1 fall into two categories:

1. Spaces where the trace of a 3D element results in a 2D element of the same space.

2. Spaces where the trace of a 3D element does not lead to a valid 2D element of the same space.

The spaces H1 and H(curl) belong to the first class, whereas L2, H(div), and H(divdiv) are contained
in the second category.

Nevertheless, we generally describe how 2D flat elements can be mapped onto surfaces. To this end,
let T̂ ⊂ R2 be the reference element and ΦT : T̂ → T ⊂ R3 the mapping onto a surface element described
above, i.e., ΦT can be seen as an embedding (∇ΦT ∈ R3×2 has full rank).

Let û be an H1-conforming finite element on T̂ . Then, we map it onto the surface with u ◦ΦT := û.
The L2-conforming elements follow the same idea, see Figure A.1. Thus, we can define

Qk
h(T ) := {u ∈ L2(T ) | for all T ∈ T ∃û ∈ Pk(T̂ ) : u|T ◦ ΦT = û}, (A.2.7)

Uk
h (T ) := {u ∈ H1(T ) | for all T ∈ T ∃û ∈ Pk(T̂ ) : u|T ◦ ΦT = û, u continuous}. (A.2.8)
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ΦT ΦT

Figure A.1: Mapping of H1- and L2-conforming elements from reference triangle onto a curved physical
surface element.

To preserve the normal or tangential continuity of H(div)- or H(curl)-conforming finite elements, the
Piola and Covariant transformations are adapted

u ◦ ΦT :=
1

J
F û, F = ∇ΦT ∈ R3×2, J =

√
det(F⊤F ), (A.2.9)

v ◦ ΦT = (F †)⊤v̂, F † = (F⊤F )−1F⊤, (A.2.10)

with the Moore–Penrose pseudo inverse F †. Therefore

N k
II(T ) := {u ∈ H(curl, T ) | for all T ∈ T ∃û ∈ Pk(T̂ ,R2) : u|T ◦ ΦT = (F †)⊤û, JutKF = 0 for all F ∈ F int},

(A.2.11)

BDMk(T ) := {u ∈ H(div, T ) | for all T ∈ T ∃û ∈ Pk(T̂ ,R2) : u|T ◦ ΦT =
1

J
F û, JuµKF = 0 for all F ∈ F int}.

(A.2.12)

In the same spirit, the transformation rule for H(divdiv) elements on surfaces is given by

σ ◦ ΦT :=
1

J2
F σ̂F⊤, σ̂ ∈ Pk(T̂ ,R2×2

sym). (A.2.13)

The finite element space Mk
h (T ) is defined accordingly. To simplify notation we neglect the dependency

of T , if there is no chance of confusion.
Note that F in (A.2.9) acts as a push forward of the tangent vector field û, if R2 is identified as a

sub-manifold of R3. Thus, the transformed u is a tangent vector field on the surface. Further σh ∈ Mh

acts on the tangent space of the surface, i.e., σh : T → TT × TT and σhν = ν⊤σh = 0.
The definitions of the facet space (3.5.2) and normal-facet space (3.5.3) on surfaces, denoted by Γk

h(T )
and Λk

h(T ), follow immediately. Note that for the normal-facet space, the Piola transformation must
transform the involved co-normal vector.
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[24] PM Naghdi. The theory of shells. In S Flügge, editor, Handbuch der Physik, volume VI/2. Springer-
Verlag, Berlin and New York, 1972.
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