The TDNNS and Hellan-Herrmann-Johnson method for nonlinear shells

Michael Neunteufel (TU Wien) Joachim Schöberl (TU Wien)

WAND2022, Salzburg, July 13th, 2022

Notation

Koiter shell model

Naghdi shell model

Linearization

Membrane locking

Notation

Deformation Displacement $\Phi: \Omega \to \mathbb{R}^3$ $u := \Phi - id$

Deformation $\Phi: \Omega \to \mathbb{R}^3$ Displacement $u := \Phi - id$ Deformation gradient $F := \nabla \Phi$ Cauchy-Green strain tensor $C := F^T F$ Green strain tensor $E := \frac{1}{2}(C - I)$

Elasticity

$$\mathcal{W}(u) = \frac{1}{2} \|\boldsymbol{E}\|_{\boldsymbol{M}}^2 - \langle f, u \rangle$$

• Normal vector ν Tangent vector τ Element normal vector $\mu = \nu \times \tau$

•
$$\boldsymbol{F} = \nabla_{\hat{\tau}} \phi, \ J = \sqrt{\det(\boldsymbol{F}^{\top} \boldsymbol{F})}$$

•
$$\boldsymbol{F} = \nabla_{\hat{\tau}} \phi$$
, $J = \| \operatorname{cof}(\boldsymbol{F}) \|_{F}$

•
$$\boldsymbol{F} = \nabla_{\hat{\tau}} \phi, \ J = \| \operatorname{cof}(\boldsymbol{F}) \|_{F}$$

• $\nu \circ \phi = \frac{1}{J} \operatorname{cof}(\boldsymbol{F}) \hat{\nu}$
 $\tau \circ \phi = \frac{1}{J_{B}} \boldsymbol{F} \hat{\tau}$
 $\mu \circ \phi = \nu \circ \phi \times \tau \circ \phi$
 $= \frac{(\boldsymbol{F}^{\dagger})^{\top} \hat{\mu}}{\| (\boldsymbol{F}^{\dagger})^{\top} \hat{\mu} \|}$

• Model of reduced dimensions

• Model of reduced dimensions

•
$$\Omega = \left\{ \varphi(\xi) + z\hat{\nu}(\xi) : \xi \in \omega, z \in \left[-\frac{t}{2}, \frac{t}{2} \right] \right\}$$

•
$$\Phi(\hat{x} + z\hat{\nu}(\xi)) = \phi(\hat{x}) + z \ (\nu + \beta) \circ \phi(\hat{x})$$

• Model of reduced dimensions

•
$$\Omega = \left\{ \varphi(\xi) + z\hat{\nu}(\xi) : \xi \in \omega, z \in \left[-\frac{t}{2}, \frac{t}{2}\right] \right\}$$

•
$$\Phi(\hat{x} + z\hat{\nu}(\xi)) = \phi(\hat{x}) + z\nu \circ \phi(\hat{x})$$

$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^{\mathsf{T}} \nabla(\nu \circ \phi) - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2$$

$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^{2} + \frac{t^{3}}{24} \|\boldsymbol{F}^{T} \nabla(\nu \circ \phi) - \nabla \hat{\nu}\|_{\boldsymbol{M}}^{2} \longleftarrow \cdots \longrightarrow$$

• Membrane energy

$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^{2} + \frac{t^{3}}{24} \|\boldsymbol{F}^{\mathsf{T}} \nabla(\nu \circ \phi) - \nabla \hat{\nu}\|_{\boldsymbol{M}}^{2} \longleftarrow \underbrace{-\cdots}_{-\cdots} \longrightarrow$$

- Membrane energy
- Bending energy

$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^{2}$$
$$+ \frac{t^{3}}{24} \|\operatorname{sym}(\boldsymbol{F}^{T}\nabla\tilde{\nu}\circ\phi) - \nabla\hat{\nu}\|_{\boldsymbol{M}}^{2}$$
$$+ \frac{tG\kappa}{2} \|\boldsymbol{F}^{T}\tilde{\nu}\circ\phi\|^{2}$$

- Membrane energy
- Bending energy
- Shearing energy

Koiter shell model

$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^\top \nabla \nu - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2 \\ + \frac{t^3}{24} \sum_{\boldsymbol{E} \in \mathcal{E}_h} \|\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)\|_{\boldsymbol{M}, \boldsymbol{E}}^2$$

$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^\top \nabla \nu - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2 \\ + \frac{t^3}{24} \sum_{E \in \mathcal{E}_h} \|\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)\|_{\boldsymbol{M}, E}^2$$

• Measure change of angles

$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^\top \nabla \nu - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2 \\ + \frac{t^3}{24} \sum_{E \in \mathcal{E}_h} \|\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)\|_{\boldsymbol{M}, E}^2$$

• Measure change of angles

$$\mathcal{L}(u, \boldsymbol{\sigma}) = \frac{t}{2} \| E_{\tau\tau}(u) \|_{\boldsymbol{M}}^2 - \frac{6}{t^3} \| \boldsymbol{\sigma} \|_{\boldsymbol{M}^{-1}}^2 + \langle \boldsymbol{F}^\top \nabla \nu - \nabla \hat{\nu}, \boldsymbol{\sigma} \rangle + \sum_{\boldsymbol{E} \in \mathcal{E}_h} \langle \sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R), \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}} \rangle_{\boldsymbol{E}}$$

$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^\top \nabla \nu - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2 \\ + \frac{t^3}{24} \sum_{E \in \mathcal{E}_h} \|\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)\|_{\boldsymbol{M}, E}^2$$

• Measure change of angles

$$\mathcal{L}(u, \boldsymbol{\sigma}) = \frac{t}{2} \| E_{\tau\tau}(u) \|_{\boldsymbol{M}}^2 - \frac{6}{t^3} \| \boldsymbol{\sigma} \|_{\boldsymbol{M}^{-1}}^2 + \langle \boldsymbol{F}^\top \nabla \nu - \nabla \hat{\nu}, \boldsymbol{\sigma} \rangle \\ + \sum_{\boldsymbol{E} \in \mathcal{E}_h} \langle \sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R), \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}} \rangle_{\boldsymbol{E}}$$

- σ has physical meaning of moment
- $\bullet~\mbox{Fourth}~\mbox{order}~\mbox{problem} \to \mbox{second}~\mbox{order}~\mbox{problem}$

Shell problem

Find $u \in [H^1(\hat{S})]^3$ and $\sigma \in H(\operatorname{div} \operatorname{div}, \hat{S})$ for

$$\mathcal{L}(u,\sigma) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 - \frac{6}{t^3} \|\sigma\|_{\boldsymbol{M}^{-1}}^2 - \langle f, u \rangle$$
$$+ \sum_{T \in \mathcal{T}_h} \int_T \sigma : (\boldsymbol{H}_\nu + (1 - \hat{\nu} \cdot \nu) \nabla \hat{\nu}) \, dx$$
$$+ \sum_{E \in \mathcal{E}_h} \int_E (\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)) \sigma_{\hat{\mu}\hat{\mu}} \, ds$$

 $\boldsymbol{H}_{\nu} := \sum_{i} (\nabla^2 u_i) \nu_i$

N., SCHÖBERL: The Hellan–Herrmann–Johnson method for nonlinear shells, *Comput. Struct. 225 (2019).*

Shell problem (Hybridization) Find $u \in [H^1(\hat{S})]^3$, $\sigma \in H(\text{div div}, \hat{S})^{dc}$ and $\alpha \in \Gamma(\hat{S})$ for $\mathcal{L}(u, \sigma) = \frac{t}{2} ||E_{\tau\tau}(u)||_M^2 - \frac{6}{t^3} ||\sigma||_{M^{-1}}^2 - \langle f, u \rangle$ $+ \sum_{T \in \mathcal{T}_h} \int_T \sigma : (H_\nu + (1 - \hat{\nu} \cdot \nu) \nabla \hat{\nu}) \, dx$ $+ \sum_{E \in \mathcal{E}_h} \int_E (\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)) \{\{\sigma_{\hat{\mu}_L \hat{\mu}_L}\}\} + \alpha_{\hat{\mu}} [\![\sigma_{\hat{\mu}\hat{\mu}}]\!] \, ds$

$$\{\{oldsymbol{\sigma}_{\hat{\mu}_L\hat{\mu}_L}\}\}=rac{1}{2}(oldsymbol{\sigma}_{\hat{\mu}_L\hat{\mu}_L}+oldsymbol{\sigma}_{\hat{\mu}_R\hat{\mu}_R}), \quad \llbracketoldsymbol{\sigma}_{\hat{\mu}\hat{\mu}}
rbrace=oldsymbol{\sigma}_{\hat{\mu}_L\hat{\mu}_L}-oldsymbol{\sigma}_{\hat{\mu}_R\hat{\mu}_R}$$

N., SCHÖBERL: The Hellan-Herrmann-Johnson method for nonlinear shells, Comput. Struct. 225 (2019).

$H^1(\Omega) := \{ u \in L^2(\Omega) \, | \, \nabla u \in [L^2(\Omega)]^d \}$

$$\begin{split} H^1(\Omega) &:= \{ u \in L^2(\Omega) \, | \, \nabla u \in [L^2(\Omega)]^d \} \\ V_k &:= \Pi^k(\mathcal{T}_h) \cap C(\Omega) \end{split}$$

$H(\mathsf{div}) := \{ \sigma \in [L^2(\Omega)]^d \, | \, \mathrm{div}(\sigma) \in L^2(\Omega) \}$

$$\begin{split} H(\operatorname{div}) &:= \{ \sigma \in [L^2(\Omega)]^d \, | \, \operatorname{div}(\sigma) \in L^2(\Omega) \} \\ BDM_k &:= \{ \sigma \in [\Pi^k(\mathcal{T}_h)]^d \, | \, \sigma_n \text{ is continuous over elements} \} \end{split}$$

$H(\operatorname{div}\,\operatorname{div}):=\{\sigma\in [L^2(\Omega)]_{sym}^{d\times d}\,|\,\operatorname{div}(\operatorname{div}(\sigma))\in H^{-1}(\Omega)\}$

 $H(\operatorname{div} \operatorname{div}) := \{ \sigma \in [L^2(\Omega)]_{sym}^{d \times d} | \operatorname{div}(\operatorname{div}(\sigma)) \in H^{-1}(\Omega) \}$ $M_h^k := \{ \sigma \in [\Pi^k(\mathcal{T}_h)]_{sym}^{d \times d} | n^T \sigma n \text{ is continuous over elements} \}$

A. PECHSTEIN AND J. SCHÖBERL: The TDNNS method for Reissner-Mindlin plates, J. Numer. Math. (2017) 137, pp. 713-740.

- Normal-normal continuous moment σ
- Preserve kinks
- Variation of $\mathcal{L}(u, \sigma)$ in direction $\delta \sigma$

$$\int_{E} (\sphericalangle(\nu_{L},\nu_{R}) - \sphericalangle(\hat{\nu}_{L},\hat{\nu}_{R})) \delta \sigma_{\hat{\mu}\hat{\mu}} \, ds \stackrel{!}{=} 0$$
$$\Rightarrow \sphericalangle(\nu_{L},\nu_{R}) - \sphericalangle(\hat{\nu}_{L},\hat{\nu}_{R}) = 0$$

Naghdi shell model

Extension to nonlinear Naghdi shells

- Use hierarchical shell model
- Additional shearing dofs γ in H(curl)
- $\tilde{\nu} \circ \phi = \nu \circ \phi + \gamma \circ \phi = \frac{1}{J} \operatorname{cof}(\boldsymbol{F}) \hat{\nu} + (\boldsymbol{F}^{\dagger})^{\top} \hat{\gamma}$
- Free of shear locking

ECHTER, R. AND OESTERLE, B. AND BISCHOFF, M.: A hierarchic family of isogeometric shell finite elements, *Comput. Methods Appl. Mech. Engrg* (2013) 254, pp. 170–180.

- Use hierarchical shell model
- Additional shearing dofs γ in H(curl)
- $\tilde{\nu} \circ \phi = \nu \circ \phi + \gamma \circ \phi = \frac{1}{J} \operatorname{cof}(\boldsymbol{F}) \hat{\nu} + (\boldsymbol{F}^{\dagger})^{\top} \hat{\gamma}$
- Free of shear locking

$$\begin{aligned} \mathcal{L}(u,\sigma,\hat{\gamma}) &= \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^{2} + \frac{t\kappa G}{2} \|\hat{\gamma}\|^{2} - \frac{6}{t^{3}} \|\sigma\|_{\boldsymbol{M}^{-1}}^{2} \\ &+ \sum_{T \in \mathcal{T}_{h}} \int_{T} \left(\boldsymbol{H}_{\tilde{\nu}} + (1 - \tilde{\nu} \cdot \hat{\nu}) \nabla \hat{\nu} - \nabla \hat{\gamma}\right) : \sigma \, dx \\ &+ \sum_{E \in \mathcal{E}_{h}} \int_{E} \left(\sphericalangle(\nu_{L},\nu_{R}) - \sphericalangle(\hat{\nu}_{L},\hat{\nu}_{R}) + \left[\!\left[\hat{\gamma}_{\hat{\mu}}\right]\!\right] \right) \sigma_{\hat{\mu}\hat{\mu}} \, ds \end{aligned}$$

Linearization

$$\begin{aligned} \mathcal{L}_{\mathrm{lin}}^{\mathrm{shell}}(u,\sigma) &= \frac{t}{2} \|\mathrm{sym}(\nabla^{\mathrm{cov}} u)\|_{\boldsymbol{M}}^{2} - \frac{6}{t^{3}} \|\sigma\|_{\boldsymbol{M}^{-1}}^{2} \\ &+ \sum_{T \in \mathcal{T}_{h}} \left(\int_{T} \boldsymbol{H}_{\hat{\nu}} : \sigma \, dx - \int_{\partial T} (\nabla u^{\top} \hat{\nu})_{\hat{\mu}} \sigma_{\hat{\mu}\hat{\mu}} \, ds \right) \\ \mathcal{L}_{\mathrm{lin}}^{\mathrm{plate}}(w,\sigma) &= -\frac{6}{t^{3}} \|\sigma\|_{\boldsymbol{M}^{-1}}^{2} + \sum_{T \in \mathcal{T}_{h}} \left(\int_{T} \nabla^{2} w : \sigma \, dx - \int_{\partial T} \frac{\partial w}{\partial \hat{\mu}} \sigma_{\hat{\mu}\hat{\mu}} \, ds \right) \end{aligned}$$

$$\mathcal{L}_{\text{lin}}^{\text{shell}}(u,\sigma) = \frac{t}{2} \|\text{sym}(\nabla^{\text{cov}} u)\|_{M}^{2} - \frac{6}{t^{3}} \|\sigma\|_{M^{-1}}^{2} + \sum_{T \in \mathcal{T}_{h}} \left(\int_{T} \boldsymbol{H}_{\hat{\nu}} : \sigma \, dx - \int_{\partial T} (\nabla u^{\top} \hat{\nu})_{\hat{\mu}} \sigma_{\hat{\mu}\hat{\mu}} \, ds \right) \mathcal{L}_{\text{lin}}^{\text{plate}}(w,\sigma) = -\frac{6}{t^{3}} \|\sigma\|_{M^{-1}}^{2} + \sum_{T \in \mathcal{T}_{h}} \left(\int_{T} \nabla^{2} w : \sigma \, dx - \int_{\partial T} \frac{\partial w}{\partial \hat{\mu}} \sigma_{\hat{\mu}\hat{\mu}} \, ds \right)$$

M. COMODI: The Hellan-Herrmann-Johnson method: some new error estimates and postprocessing, *Math. Comp. 52* (1989) pp. 17–29.

$$\begin{split} \mathcal{L}_{\mathrm{lin}}^{\mathrm{shell}}(u,\sigma,\hat{\gamma}) &= \frac{t}{2} \|\mathrm{sym}(\nabla^{\mathrm{cov}} u)\|_{\boldsymbol{M}}^{2} + \frac{t\kappa G}{2} \|\hat{\gamma}\|^{2} - \frac{6}{t^{3}} \|\sigma\|_{\boldsymbol{M}^{-1}}^{2} \\ &+ \sum_{T \in \mathcal{T}_{h}} \left(\int_{\mathcal{T}} (\boldsymbol{H}_{\hat{\nu}} - \nabla \hat{\gamma}) : \sigma \, dx - \int_{\partial \mathcal{T}} ((\nabla u^{\top} \hat{\nu})_{\hat{\mu}} - \hat{\gamma}_{\hat{\mu}}) \sigma_{\hat{\mu}\hat{\mu}} \, ds \right) \\ \mathcal{L}_{\mathrm{lin}}^{\mathrm{plate}}(w,\sigma,\hat{\gamma}) &= \frac{t\kappa G}{2} \|\hat{\gamma}\|^{2} - \frac{6}{t^{3}} \|\sigma\|_{\boldsymbol{M}^{-1}}^{2} \\ &+ \sum_{T \in \mathcal{T}_{h}} \left(\int_{\mathcal{T}} (\nabla^{2} w - \nabla \hat{\gamma}) : \sigma \, dx - \int_{\partial \mathcal{T}} (\frac{\partial w}{\partial \hat{\mu}} - \hat{\gamma}_{\hat{\mu}}) \sigma_{\hat{\mu}\hat{\mu}} \, ds \right) \end{split}$$

A. PECHSTEIN AND J. SCHÖBERL: The TDNNS method for Reissner-Mindlin plates, J. Numer. Math. (2017) 137, pp. 713–740.

Membrane locking

$$\mathcal{W}(u) = t E_{mem}(u) + t^3 E_{bend}(u) - f \cdot u$$

$$\mathcal{W}(u) = rac{1}{t^2} E_{\text{mem}}(u) + E_{\text{bend}}(u) - \tilde{f} \cdot u$$

$$\mathcal{W}(u) = \frac{1}{t^2} E_{\text{mem}}(u) + E_{\text{bend}}(u) - \tilde{f} \cdot u$$

$$V_h = \Pi(\mathcal{T}_h) \cap \mathcal{C}(\Omega) \subset H^1(\Omega)$$

$$\mathcal{W}(u) = \frac{1}{t^2} E_{\text{mem}}(u) + E_{\text{bend}}(u) - \tilde{f} \cdot u$$

$$E_{\rm mem}(u) = 0 \Rightarrow E_{\rm mem}(u_h) = 0$$

 $V_h = \Pi(\mathcal{T}_h) \cap C(\Omega) \subset H^1(\Omega)$

$$\mathcal{W}(u) = \frac{1}{t^2} E_{\text{mem}}(u) + E_{\text{bend}}(u) - \tilde{f} \cdot u$$

$$E_{\text{mem}}(u) = 0 \Rightarrow E_{\text{mem}}(u_h) = 0$$

 $V_h = \Pi(\mathcal{T}_h) \cap C(\Omega) \subset H^1(\Omega)$

• Pre-asymptotic regime

• Pre-asymptotic regime

• Pre-asymptotic regime

$$\begin{split} &\mathsf{Reg}_{h}^{k} := \{ \boldsymbol{\sigma} \in [\Pi^{k}(\mathcal{T}_{h})]_{sym}^{d \times d} \mid \boldsymbol{t}^{\mathsf{T}} \boldsymbol{\sigma} \boldsymbol{t} \text{ is continuous over elements} \} \\ & H(\mathsf{curl} \; \mathsf{curl}) := \{ \boldsymbol{\sigma} \in [L^{2}(\Omega)]_{sym}^{d \times d} \mid \mathsf{curl} \; (\mathsf{curl} \; \boldsymbol{\sigma})^{\mathsf{T}} \in [H^{-1}(\Omega)]^{2d - 3 \times 2d - 3} \} \end{split}$$

CHRISTIANSEN: On the linearization of Regge calculus, Numerische Mathematik 119, 4 (2011), pp. 613–640.

$\frac{1}{t^2} \| \quad \boldsymbol{E}_{\tau\tau}(\boldsymbol{u}_h) \|_{\boldsymbol{M}}^2$

$$\frac{1}{t^2} \| \boldsymbol{\Pi}_{\boldsymbol{L}^2}^{\boldsymbol{k}} \boldsymbol{E}_{\tau \tau}(\boldsymbol{u}_h) \|_{\boldsymbol{M}}^2$$

• Reduced integration for quadrilateral meshes

- $\frac{1}{t^2} \| \mathcal{I}_{\mathcal{R}}^k \boldsymbol{E}_{\tau\tau}(\boldsymbol{u}_h) \|_{\boldsymbol{M}}^2$
- Reduced integration for quadrilateral meshes
- Regge interpolant for triangles
- Connection to MITC shell elements
- N., SCHÖBERL: Avoiding membrane locking with Regge interpolation, *Comput. Methods Appl. Mech. Engrg 373* (2021).

Open hemisphere with clamped ends

- Hellan-Herrmann-Johnson method for nonlinear Koiter shells
- TDNNS method for nonlinear Naghdi shells
- Regge interpolation avoids membrane locking

- N., SCHÖBERL: The Hellan–Herrmann–Johnson method for nonlinear shells, *Comput. Struct. 225 (2019).*
- N., SCHÖBERL: Avoiding membrane locking with Regge interpolation, *Comput. Methods Appl. Mech. Engrg. 373* (2021).
- N.: Mixed Finite Element Methods For Nonlinear Continuum Mechanics And Shells, *PhD thesis, TU Wien (2021).*

Summary and Outlook

- NGSolve Add-on
- Computing high-precision reference values
- Multiphysics

- N., SCHÖBERL: The Hellan–Herrmann–Johnson method for nonlinear shells, *Comput. Struct. 225 (2019).*
- N., SCHÖBERL: Avoiding membrane locking with Regge interpolation, *Comput. Methods Appl. Mech. Engrg.* 373 (2021).
- N.: Mixed Finite Element Methods For Nonlinear Continuum Mechanics And Shells, *PhD thesis, TU Wien (2021).*

- NGSolve Add-on
- Computing high-precision reference values
- Multiphysics

Thank You for Your attention!

- N., SCHÖBERL: The Hellan–Herrmann–Johnson method for nonlinear shells, *Comput. Struct. 225 (2019).*
- N., SCHÖBERL: Avoiding membrane locking with Regge interpolation, *Comput. Methods Appl. Mech. Engrg. 373 (2021).*
- N.: Mixed Finite Element Methods For Nonlinear Continuum Mechanics And Shells, *PhD thesis, TU Wien (2021).*