Robust mixed methods for continuum mechanics, plates and shells

<u>Michael Neunteufel</u> (TU Wien) Joachim Schöberl (TU Wien)

Workshop: Geometric Mechanics and Structure Preserving Discretizations of Shell Elasticity Utica NY, Jul 24th, 2023

Continuum mechanics

Plates

Nonlinear shells

Continuum mechanics

Linear elasticity

Force balance equation: $-\operatorname{div}(\sigma) = f$

Linear elasticity

$$\int_{\Omega} \mathbb{C} \boldsymbol{\epsilon}(\boldsymbol{u}) : \boldsymbol{\epsilon}(\delta \boldsymbol{u}) \, d\boldsymbol{x} = \int_{\Omega} \boldsymbol{f} \cdot \delta \boldsymbol{u} \, d\boldsymbol{x}$$

- *u* displacement
- $\epsilon(u) = 0.5(\nabla u + \nabla u^T)$
- $\mathbb{C}\boldsymbol{\epsilon} = 2\mu\boldsymbol{\epsilon} + \lambda \mathrm{tr}(\boldsymbol{\epsilon})\boldsymbol{I}$
- $\boldsymbol{\sigma} = \mathbb{C} \boldsymbol{\epsilon}$ stress

Linear elasticity

Force balance equation: $-\operatorname{div}(\sigma) = f$

Linear elasticity

$$\int_{\Omega} \mathbb{C} \boldsymbol{\epsilon}(\boldsymbol{u}) : \boldsymbol{\epsilon}(\delta \boldsymbol{u}) \, d\boldsymbol{x} = \int_{\Omega} f \cdot \delta \boldsymbol{u} \, d\boldsymbol{x}$$

- *u* displacement
- $\epsilon(u) = 0.5(\nabla u + \nabla u^T)$
- $\mathbb{C}\epsilon = 2\mu\epsilon + \lambda \operatorname{tr}(\epsilon)I$
- $\boldsymbol{\sigma} = \mathbb{C} \boldsymbol{\epsilon}$ stress

Locking problems:

• $\lambda \to \infty$ (nearly) incompressible material

Linear elasticity

Force balance equation: $-\operatorname{div}(\sigma) = f$

Linear elasticity

$$\int_{\Omega} \mathbb{C} \boldsymbol{\epsilon}(\boldsymbol{u}) : \boldsymbol{\epsilon}(\delta \boldsymbol{u}) \, d\boldsymbol{x} = \int_{\Omega} f \cdot \delta \boldsymbol{u} \, d\boldsymbol{x}$$

• u displacement

- $\epsilon(u) = 0.5(\nabla u + \nabla u^T)$
- $\mathbb{C}\boldsymbol{\epsilon} = 2\mu\boldsymbol{\epsilon} + \lambda \mathrm{tr}(\boldsymbol{\epsilon})\boldsymbol{I}$
- $\boldsymbol{\sigma} = \mathbb{C} \boldsymbol{\epsilon}$ stress

Locking problems:

- $\lambda
 ightarrow \infty$ (nearly) incompressible material
- Coercivity: ||ϵ(u)||²_{L²} ≥ c_K ||∇u||²_{L²}, c_K → 0 for deteriorating aspect ratio

$$\int_{\Omega} \mathbb{C}\epsilon(u) : \epsilon(\delta u) \, dx = \int_{\Omega} 2\mu \, \epsilon(u) : \epsilon(\delta u) + \underbrace{\lambda \operatorname{div}(u)}_{=:p} \operatorname{div}(\delta u) \, dx$$

- Define pressure $p = \lambda \operatorname{div}(u)$ and rewrite as mixed (saddle point) problem
- Well-defined for $\lambda \to \infty$ (need for stable pairing of finite elements)

Find $(u, p) \in U_h \times Q_h$ s.t. for all $(\delta u, \delta p) \in U_h \times Q_h$

$$\int_{\Omega} 2\mu \,\epsilon(u) : \epsilon(\delta u) + p \operatorname{div}(\delta u) \, dx = \int_{\Omega} f \cdot \delta u \, dx$$
$$\int_{\Omega} \operatorname{div}(u) \,\delta p \qquad -\frac{1}{\lambda} \, p \,\delta p \, dx = 0$$

$$\int_{\Omega} \mathbb{C}\epsilon(u) : \epsilon(\delta u) \, dx = \int_{\Omega} 2\mu \, \epsilon(u) : \epsilon(\delta u) + \underbrace{\lambda \operatorname{div}(u)}_{=:p} \operatorname{div}(\delta u) \, dx$$

- Define pressure $p = \lambda \operatorname{div}(u)$ and rewrite as mixed (saddle point) problem
- Well-defined for $\lambda \to \infty$ (need for stable pairing of finite elements)

Find $(u, p) \in U_h \times Q_h$ s.t. for all $(\delta u, \delta p) \in U_h \times Q_h$

$$\int_{\Omega} 2\mu \,\epsilon(u) : \epsilon(\delta u) + p \operatorname{div}(\delta u) \, dx = \int_{\Omega} f \cdot \delta u \, dx$$
$$\int_{\Omega} \operatorname{div}(u) \,\delta p \qquad -\frac{1}{\lambda} \, p \,\delta p \, dx = 0$$

Quadrilateral elements: $U_h = [\mathcal{L}_h^k(\mathscr{T}_h)]^3$, $Q_h = \mathcal{P}^{k-1}(\mathscr{T}_h)$ (Stokes-stable pairing)

$$\int_{\Omega} \mathbb{C}\epsilon(u) : \epsilon(\delta u) \, dx = \int_{\Omega} 2\mu \, \epsilon(u) : \epsilon(\delta u) + \lambda \prod_{L^2}^{k-1} \operatorname{div}(u) \prod_{L^2}^{k-1} \operatorname{div}(\delta u) \, dx$$

- Define pressure $p = \lambda \operatorname{div}(u)$ and rewrite as mixed (saddle point) problem
- Well-defined for $\lambda \to \infty$ (need for stable pairing of finite elements)

Find $(u, p) \in U_h \times Q_h$ s.t. for all $(\delta u, \delta p) \in U_h \times Q_h$

$$\int_{\Omega} 2\mu \,\epsilon(u) : \epsilon(\delta u) + p \operatorname{div}(\delta u) \, dx = \int_{\Omega} f \cdot \delta u \, dx$$
$$\int_{\Omega} \operatorname{div}(u) \,\delta p \qquad -\frac{1}{\lambda} \, p \,\delta p \, dx = 0$$

Quadrilateral elements: $U_h = [\mathcal{L}_h^k(\mathscr{T}_h)]^3$, $Q_h = \mathcal{P}^{k-1}(\mathscr{T}_h)$ (Stokes-stable pairing)

•
$$\mathbb{C}^{-1}\sigma = \epsilon(u)$$

$$\int_{\Omega} \mathbb{C} \epsilon(u) : \epsilon(\delta u) \, dx = \int_{\Omega} f \cdot \delta u \, dx \qquad \forall \delta u$$

•
$$\mathbb{C}^{-1} \boldsymbol{\sigma} = \boldsymbol{\epsilon}(\boldsymbol{u})$$

Find $\boldsymbol{\sigma} \in [L^2(\Omega)]^{3 imes 3}_{\operatorname{sym}}$ and $u \in [H^1(\Omega)]^3$ s.t.

$$\int_{\Omega} \mathbb{C}^{-1} \boldsymbol{\sigma} : \delta \boldsymbol{\sigma} \, d\mathbf{x} - \int_{\Omega} \delta \boldsymbol{\sigma} : \boldsymbol{\epsilon}(\boldsymbol{u}) \, d\mathbf{x} = 0 \qquad \forall \delta \boldsymbol{\sigma}$$
$$- \int_{\Omega} \boldsymbol{\sigma} : \boldsymbol{\epsilon}(\delta \boldsymbol{u}) \, d\mathbf{x} = - \int_{\Omega} f \cdot \delta \boldsymbol{u} \, d\mathbf{x} \qquad \forall \delta \boldsymbol{u}$$

 $\langle \mathbf{div}\boldsymbol{\sigma}, \boldsymbol{u} \rangle_{H^{-1} \times H^1}$

• *u* continuous,

 σ discontinuous

•
$$\mathbb{C}^{-1} \boldsymbol{\sigma} = \boldsymbol{\epsilon}(\boldsymbol{u})$$

Find $\sigma \in H(\operatorname{div}, \Omega)^{\operatorname{sym}}$ and $u \in [L^2(\Omega)]^3$ s.t.

$$\int_{\Omega} \mathbb{C}^{-1} \boldsymbol{\sigma} : \delta \boldsymbol{\sigma} \, d\mathbf{x} + \int_{\Omega} \mathbf{div} \delta \boldsymbol{\sigma} \cdot \boldsymbol{u} \, d\mathbf{x} = 0 \qquad \forall \delta \boldsymbol{\sigma}$$
$$\int_{\Omega} \mathbf{div} \boldsymbol{\sigma} \cdot \delta \boldsymbol{u} \, d\mathbf{x} = -\int_{\Omega} f \cdot \delta \boldsymbol{u} \, d\mathbf{x} \qquad \forall \delta \boldsymbol{u}$$

 $\langle \mathbf{div} \boldsymbol{\sigma}, u \rangle_{H^{-1} \times H^1}$ $(\mathbf{div} \boldsymbol{\sigma}, u)_{L^2}$ u continuous, σ discontinuousu discontinuous, σ normal continuous, σn

•
$$\mathbb{C}^{-1} \boldsymbol{\sigma} = \boldsymbol{\epsilon}(\boldsymbol{u})$$

Find $\sigma \in H(\operatorname{divdiv}, \Omega)$ and $u \in H(\operatorname{curl}, \Omega)$ s.t.

$$\int_{\Omega} \mathbb{C}^{-1} \boldsymbol{\sigma} : \delta \boldsymbol{\sigma} \, d\mathbf{x} + \langle \mathbf{div} \delta \boldsymbol{\sigma}, \boldsymbol{u} \rangle = 0 \qquad \forall \delta \boldsymbol{\sigma}$$
$$\langle \mathbf{div} \boldsymbol{\sigma}, \delta \boldsymbol{u} \rangle = -\int_{\Omega} f \cdot \delta \boldsymbol{u} \, d\mathbf{x} \qquad \forall \delta \boldsymbol{u}$$

 $\langle \operatorname{div} \sigma, u \rangle_{H^{-1} \times H^1}$ • u continuous, σ discontinuous $(\operatorname{div} \sigma, u)_{L^2}$ • u discontinuous, σ normal continuous, σn $\langle \operatorname{div} \sigma, u \rangle_{H(\operatorname{curl})^* \times H(\operatorname{curl})}$ • u tangential continuous, $u \cdot \tau, \sigma$ normal-normal continuous, $n^T \sigma n$

$$\begin{aligned} H^1(\Omega) &= \{ u \in L^2(\Omega) \, | \, \nabla u \in [L^2(\Omega)]^d \} \\ \mathcal{L}^k_h(\mathscr{T}_h) &= \mathcal{P}^k(\mathscr{T}_h) \cap \mathcal{C}(\Omega) \end{aligned}$$

$$\begin{split} H(\operatorname{curl},\Omega) &= \{ \sigma \in [L^2(\Omega)]^d \, | \, \operatorname{curl} \sigma \in [L^2(\Omega)]^{2d-3} \} \\ \mathcal{N}_{II}^k &= \{ \sigma \in [\mathcal{P}^k(\mathscr{T}_h)]^d \, | \, \llbracket \sigma_\tau \rrbracket_F = 0 \} \end{split}$$

$$\begin{aligned} H(\operatorname{div},\Omega) &= \{ \sigma \in [L^2(\Omega)]^d \mid \operatorname{div} \sigma \in L^2(\Omega) \} \\ BDM^k &= \{ \sigma \in [\mathcal{P}^k(\mathscr{T}_h)]^d \mid [\![\sigma_n]\!]_F = 0 \} \end{aligned}$$

$$\begin{aligned} H(\operatorname{divdiv}, \Omega) &= \{ \sigma \in [L^2(\Omega)]_{\operatorname{sym}}^{d \times d} \mid \operatorname{divdiv} \sigma \in H^{-1}(\Omega) \} \\ M_h^k(\mathscr{T}_h) &= \{ \sigma \in [\mathcal{P}^k(\mathscr{T}_h)]_{\operatorname{sym}}^{d \times d} \mid [\![n^T \sigma n]\!]_F = 0 \} \end{aligned}$$

TDNNS method for linear elasticity

Find $\sigma \in H(\operatorname{divdiv}, \Omega)$ and $u \in H(\operatorname{curl}, \Omega)$ s.t.

$$\int_{\Omega} \mathbb{C}^{-1} \boldsymbol{\sigma} : \delta \boldsymbol{\sigma} \, d\mathbf{x} + \langle \operatorname{div} \delta \boldsymbol{\sigma}, \boldsymbol{u} \rangle \qquad = 0 \qquad \qquad \forall \delta \boldsymbol{\sigma}$$

$$\langle \operatorname{div} \boldsymbol{\sigma}, \boldsymbol{u} \rangle = -\int_{\Omega} \boldsymbol{f} \cdot \delta \boldsymbol{u} \, d\boldsymbol{x} \qquad \forall \delta \boldsymbol{u}$$

$$\begin{aligned} \langle \operatorname{\mathbf{div}}\boldsymbol{\sigma}, \boldsymbol{u} \rangle &:= \sum_{T \in \mathscr{T}_h} \int_T \operatorname{\mathbf{div}}\boldsymbol{\sigma} \cdot \boldsymbol{u} \, d\boldsymbol{x} - \sum_{E \in \mathscr{E}_h} \int_E \llbracket \boldsymbol{\sigma}_{nt} \rrbracket \boldsymbol{u}_t \, d\boldsymbol{s} \\ &= \sum_{T \in \mathscr{T}_h} - \int_T \boldsymbol{\sigma} : \nabla \boldsymbol{u} \, d\boldsymbol{x} + \sum_{E \in \mathscr{E}_h} \int_E \boldsymbol{\sigma}_{nn} \llbracket \boldsymbol{u}_n \rrbracket \, d\boldsymbol{s} = -\langle \boldsymbol{\sigma}, \nabla \boldsymbol{u} \rangle \end{aligned}$$

• Robust for $\lambda \to \infty$ (with stabilization)

A. PECHSTEIN, J. SCHÖBERL: Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity (2011).

TDNNS method for linear elasticity

Find $\sigma \in H(\operatorname{divdiv}, \Omega)$ and $u \in H(\operatorname{curl}, \Omega)$ s.t.

$$\int_{\Omega} \mathbb{C}^{-1} \boldsymbol{\sigma} : \delta \boldsymbol{\sigma} \, d\mathbf{x} + \langle \operatorname{div} \delta \boldsymbol{\sigma}, u \rangle = 0 \qquad \forall \delta \boldsymbol{\sigma}$$

$$\langle \operatorname{div}\boldsymbol{\sigma}, \boldsymbol{u} \rangle = -\int_{\Omega} \boldsymbol{f} \cdot \delta \boldsymbol{u} \, d\boldsymbol{x} \qquad \forall \delta \boldsymbol{u}$$

$$\begin{aligned} \langle \operatorname{\mathbf{div}}\boldsymbol{\sigma}, \boldsymbol{u} \rangle &:= \sum_{T \in \mathscr{T}_h} \int_T \operatorname{\mathbf{div}}\boldsymbol{\sigma} \cdot \boldsymbol{u} \, d\boldsymbol{x} - \sum_{E \in \mathscr{E}_h} \int_E \llbracket \boldsymbol{\sigma}_{nt} \rrbracket \boldsymbol{u}_t \, d\boldsymbol{s} \\ &= \sum_{T \in \mathscr{T}_h} - \int_T \boldsymbol{\sigma} : \nabla \boldsymbol{u} \, d\boldsymbol{x} + \sum_{E \in \mathscr{E}_h} \int_E \boldsymbol{\sigma}_{nn} \llbracket \boldsymbol{u}_n \rrbracket \, d\boldsymbol{s} = -\langle \boldsymbol{\sigma}, \nabla \boldsymbol{u} \rangle \end{aligned}$$

- Robust for $\lambda \to \infty$ (with stabilization)
- Robust in aspect ratio

A. PECHSTEIN, J. SCHÖBERL: Anisotropic mixed finite elements for elasticity (2012).

TDNNS method for linear elasticity

Find $\sigma \in H(\operatorname{divdiv}, \Omega)$ and $u \in H(\operatorname{curl}, \Omega)$ s.t.

$$\int_{\Omega} \mathbb{C}^{-1} \boldsymbol{\sigma} : \delta \boldsymbol{\sigma} \, d\mathbf{x} + \langle \mathbf{div} \delta \boldsymbol{\sigma}, u \rangle = 0 \qquad \forall \delta \boldsymbol{\sigma}$$
$$\langle \mathbf{div} \boldsymbol{\sigma}, u \rangle = -\int_{\Omega} f \cdot \delta u \, d\mathbf{x} \qquad \forall \delta u$$

- Works for linear material law $\ensuremath{\mathbb{C}}$
- Problem for nonlinear (not invertible) material law

TDNNS method for linear elasticity

Find $\sigma \in H(\operatorname{divdiv}, \Omega)$ and $u \in H(\operatorname{curl}, \Omega)$ s.t.

$$\int_{\Omega} \mathbb{C}^{-1} \boldsymbol{\sigma} : \delta \boldsymbol{\sigma} \, d\mathbf{x} + \langle \mathbf{div} \delta \boldsymbol{\sigma}, u \rangle = 0 \qquad \forall \delta \boldsymbol{\sigma}$$
$$\langle \mathbf{div} \boldsymbol{\sigma}, u \rangle = -\int_{\Omega} f \cdot \delta u \, d\mathbf{x} \qquad \forall \delta u$$

- Works for linear material law $\ensuremath{\mathbb{C}}$
- Problem for nonlinear (not invertible) material law
- Hu-Washizu three-field principle

Continuum mechanics (nonlinear)

Displacement Deformation gradient Cauchy-Green strain tensor Green strain tensor

Energy density Stress tensor

$$u = \Phi - id$$

$$F := I + \nabla u$$

$$C := F^{\top}F$$

$$E := \frac{1}{2}(C - I)$$

. .

$$\mathcal{W}(\boldsymbol{C}): \mathbb{R}^{3 imes 3}
ightarrow \mathbb{R}$$

 $\boldsymbol{\Sigma} := 2 rac{\partial \mathcal{W}}{\partial C}$

$$\int_{\Omega} \mathcal{W}(\boldsymbol{C}(u)) - f \cdot u \, dx \to \min!$$

Nonlinear elasticity

$$\int_{\Omega} 2 \frac{\partial \mathcal{W}(\boldsymbol{C})}{\partial \boldsymbol{C}} : \boldsymbol{F}^{\top} \nabla \delta u \, d\mathbf{x} = \int_{\Omega} \boldsymbol{f} \cdot \delta u \qquad \forall \delta u$$

Continuum mechanics (nonlinear)

Displacement Deformation gradient $\boldsymbol{F} := \boldsymbol{I} + \nabla u$ Cauchy-Green strain tensor $\boldsymbol{C} := \boldsymbol{F}^\top \boldsymbol{F}$ Green strain tensor

Energy density Stress tensor

$$E := \frac{1}{2}(C - I)$$
$$\mathcal{W}(C) : \mathbb{R}^{3 \times 3} \to \mathbb{R}$$
$$\Sigma := 2\frac{\partial \mathcal{W}}{\partial C}$$

 $u = \Phi - \mathrm{id}$

Nonlinear elasticity

$$\int_{\Omega} 2 \frac{\partial \mathcal{W}(\boldsymbol{C})}{\partial \boldsymbol{C}} : \boldsymbol{F}^{\top} \nabla \delta \boldsymbol{u} \, d\boldsymbol{x} = \int_{\Omega} \boldsymbol{f} \cdot \delta \boldsymbol{u} \qquad \forall \delta \boldsymbol{u}$$

Continuum mechanics (nonlinear)

Displacement Deformation gradient $\boldsymbol{F} := \boldsymbol{I} + \nabla u$ Cauchy-Green strain tensor $\boldsymbol{C} := \boldsymbol{F}^\top \boldsymbol{F}$ Green strain tensor

Energy density Stress tensor

$$\mathcal{W}(\boldsymbol{C}):\mathbb{R}^{3 imes 3}
ightarrow\mathbb{R}$$
 $\boldsymbol{\Sigma}:=2rac{\partial\mathcal{W}}{\partial\mathcal{C}}$

 $\boldsymbol{E} := \frac{1}{2}(\boldsymbol{C} - \boldsymbol{I})$

 $u = \Phi - \mathrm{id}$

$$\int_{\Omega} \mathcal{W}(\boldsymbol{C}(u)) - f \cdot u \, dx \to \min!$$
$$-\operatorname{div} \boldsymbol{P} = f \quad \text{in } \Omega \quad + \operatorname{bc}$$

Nonlinear elasticity

$$\int_{\Omega} 2 \frac{\partial \mathcal{W}(\boldsymbol{C})}{\partial \boldsymbol{C}} : \boldsymbol{F}^{\top} \nabla \delta u \, d\mathbf{x} = \int_{\Omega} \boldsymbol{f} \cdot \delta u \qquad \forall \delta u$$

$$\min_{u\in V_h}\int_{\Omega}\mathcal{W}(\boldsymbol{F}(u))-f\cdot u\,dx$$

N., PECHSTEIN, SCHÖBERL: Three-field mixed finite element methods for nonlinear elasticity *Comput. Methods Appl. Mech. Engrg 382 (2021)*

$$\min_{\substack{u \in V_h \\ F = F(u)}} \int_{\Omega} \mathcal{W}(F) - f \cdot u \, dx$$

N., PECHSTEIN, SCHÖBERL: Three-field mixed finite element methods for nonlinear elasticity Comput. Methods Appl. Mech. Engrg 382 (2021)

$$\min_{\substack{u \in V_h \\ F = F(u)}} \int_{\Omega} \mathcal{W}(F) - f \cdot u \, dx$$

$$\mathcal{L}(u, \boldsymbol{F}, \boldsymbol{P}) = \int_{\Omega} \mathcal{W}(\boldsymbol{F}) - f \cdot u \, dx - \langle \boldsymbol{F} - (\nabla u + \boldsymbol{I}), \boldsymbol{P} \rangle$$

- Lifting distribution ∇u to $\boldsymbol{F} \in [L^2]^{3 \times 3}$
- 1st Piola–Kirchhoff stress tensor $P(=F\Sigma)$ as Lagrange multiplier
- $P = P_{sym} + P_{skew}$, $P_{sym} \in H(divdiv)$, $P_{skew} \in [L^2]_{skew}^{3\times3}$ $F = F_{sym} + F_{skew}$, $F_{sym} \in [L^2]_{sym}^{3\times3}$, $F_{skew} \in [L^2]_{skew}^{3\times3}$
- N., PECHSTEIN, SCHÖBERL: Three-field mixed finite element methods for nonlinear elasticity Comput. Methods Appl. Mech. Engrg 382 (2021)

Numerical example: Cook's Membrane

Numerical example: Cook's Membrane

Plates

TU WIEN TECHNISCHE UNIVERSITÄT WIEN

Bi-harmonic plate problem would require C^1 -continuous finite elements

 $\operatorname{div}\operatorname{div}(\mathbb{C}\nabla^2 w) = f \qquad \Rightarrow w \in H^2(\Omega)$

Rewrite as mixed method

$$\sigma = \mathbb{C}\nabla^2 w, \Rightarrow w \in H^1(\Omega)$$

divdiv $\sigma = f, \Rightarrow \sigma \in H(\operatorname{divdiv}, \Omega)$

Hellan-Herrmann-Johnson method

Find $w \in H^1(\Omega)$ and $\sigma \in H(\operatorname{divdiv}, \Omega)$ for the saddle point problem

$$\mathcal{L}(w,\sigma) = -\frac{1}{2} \|\sigma\|_{\mathbb{C}^{-1}}^2 - \sum_{T \in \mathscr{T}_h} \int_T \nabla w \cdot \operatorname{div} \sigma \, dx + \int_{\partial T} (\nabla w)_\tau \sigma_{\mu\tau} \, ds - \langle f, w \rangle.$$

M. COMODI: The Hellan-Herrmann-Johnson method: some new error estimates and postprocessing, Math. Comp. 52 (1989) pp. 17–29.

TU WIEN TECHNISCHE UNIVERSITÄT WIEN

Bi-harmonic plate problem would require C^1 -continuous finite elements

 $\operatorname{div}\operatorname{div}(\mathbb{C}\nabla^2 w) = f \qquad \Rightarrow w \in H^2(\Omega)$

Rewrite as mixed method

$$\sigma = \mathbb{C}\nabla^2 w, \Rightarrow w \in H^1(\Omega)$$

divdiv $\sigma = f, \Rightarrow \sigma \in H(\text{divdiv}, \Omega)$

Hellan-Herrmann-Johnson method

Find $w \in H^1(\Omega)$ and $\sigma \in H(\operatorname{divdiv}, \Omega)$ s.t. for all $(\delta w, \delta \sigma) \in H^1(\Omega) \times H(\operatorname{divdiv}, \Omega)$

$$\mathcal{L}(w, \sigma) = - rac{1}{2} \|\sigma\|_{\mathbb{C}^{-1}}^2 - \langle \operatorname{\mathbf{div}} \sigma,
abla w
angle - \langle f, w
angle.$$

M. COMODI: The Hellan-Herrmann-Johnson method: some new error estimates and postprocessing, Math. Comp. 52 (1989) pp. 17–29.

TU WIEN TECHNISCHE UNIVERSITÄT WIEN

Bi-harmonic plate problem would require C^1 -continuous finite elements

 $\operatorname{div}\operatorname{div}(\mathbb{C}\nabla^2 w) = f \qquad \Rightarrow w \in H^2(\Omega)$

Rewrite as mixed method

 $\sigma = \mathbb{C}\nabla^2 w, \quad \Rightarrow w \in H^1(\Omega)$ divdiv $\sigma = f, \quad \Rightarrow \sigma \in H(\operatorname{divdiv}, \Omega)$

Hellan-Herrmann-Johnson method

Find $w \in H^1(\Omega)$ and $\sigma \in H(\operatorname{divdiv}, \Omega)$ s.t. for all $(\delta w, \delta \sigma) \in H^1(\Omega) \times H(\operatorname{divdiv}, \Omega)$

M. COMODI: The Hellan-Herrmann-Johnson method: some new error estimates and postprocessing, Math. Comp. 52 (1989) pp. 17–29.

Reissner–Mindlin plate (TDNNS)

$$\mathcal{W}(w,\beta) = \frac{1}{2} \int_{\Omega} \|\boldsymbol{\epsilon}(\beta)\|_{\mathbb{C}}^2 + \frac{1}{t^2} \|\nabla w - \beta\|^2 \, dx - \int_{\Omega} f \, w \, dx$$

• thickness t, vertical deflection w, rotation β

• limit $t \to 0 \Rightarrow \beta = \nabla w \Rightarrow$ Kirchhoff–Love plate

•
$$w \in \mathcal{L}_{h}^{k}(\mathscr{T}_{h})$$
 and $\beta \in [\mathcal{L}_{h}^{k}(\mathscr{T}_{h})]^{2}$ leads to locking as
 $\nabla w \in \mathcal{H}(\operatorname{curl}, \Omega)$

Reissner-Mindlin plate (TDNNS)

$$\mathcal{W}(w,\beta) = \frac{1}{2} \int_{\Omega} \|\epsilon(\beta)\|_{\mathbb{C}}^2 + \frac{1}{t^2} \|\nabla w - \mathcal{I}_{\mathcal{N}}^k \beta\|^2 \, dx - \int_{\Omega} f \, w \, dx$$

• thickness t, vertical deflection w, rotation β

- limit $t \to 0 \Rightarrow \beta = \nabla w \Rightarrow$ Kirchhoff–Love plate
- $w \in \mathcal{L}_h^k(\mathscr{T}_h)$ and $\beta \in [\mathcal{L}_h^k(\mathscr{T}_h)]^2$ leads to locking as $\nabla w \in \mathcal{H}(\operatorname{curl}, \Omega)$
- MITC elements: Use interpolant into Nedéléc elements $\mathcal{I}^k_{\mathcal{N}}$

Reissner-Mindlin plate (TDNNS)

$$\mathcal{W}(w,\beta) = \frac{1}{2} \int_{\Omega} \|\boldsymbol{\epsilon}(\beta)\|_{\mathbb{C}}^2 + \frac{1}{t^2} \|\nabla w - \beta\|^2 \, dx - \int_{\Omega} f \, w \, dx$$

• thickness t, vertical deflection w, rotation β

- limit $t \to 0 \Rightarrow \beta = \nabla w \Rightarrow$ Kirchhoff-Love plate
- $w \in \mathcal{L}_{h}^{k}(\mathscr{T}_{h})$ and $\beta \in [\mathcal{L}_{h}^{k}(\mathscr{T}_{h})]^{2}$ leads to locking as $\nabla w \in \mathcal{H}(\operatorname{curl}, \Omega)$
- MITC elements: Use interpolant into Nedéléc elements $\mathcal{I}^k_{\mathcal{N}}$
- Use $\beta \in H(\operatorname{curl}, \Omega)$ and TDNNS for $\nabla \beta \notin L^2$

TDNNS method for Reissner–Mindlin plate

Find
$$(w, \beta, \sigma) \in \mathcal{L}_{h}^{k}(\mathscr{T}_{h}) \times \mathcal{N}_{h}^{k-1} \times \mathcal{M}_{h}^{k-1}(\mathscr{T}_{h})$$
 for the Lagrangian
 $\mathcal{L}(w, \beta, \sigma) = -\frac{1}{2} \|\sigma\|_{\mathbb{C}^{-1}}^{2} dx - \langle \operatorname{div}\sigma, \beta \rangle + \int_{\Omega} \frac{1}{t^{2}} \|\nabla w - \beta\|^{2} dx - \int_{\Omega} f w dx$

A. PECHSTEIN, J. SCHÖBERL: The TDNNS method for Reissner-Mindlin plates, J. Numer. Math. (2017) 137, pp. 713-740.

Nonlinear shells

• Normal vector ν

Tangent vector τ Element normal vector $\mu = \nu \times \tau$

•
$$\boldsymbol{F} = \nabla_{\hat{\tau}} \phi, \ J = \sqrt{\det(\boldsymbol{F}^{\top} \boldsymbol{F})}$$

•
$$\boldsymbol{F} = \nabla_{\hat{\tau}} \phi, \ J = \| \operatorname{cof}(\boldsymbol{F}) \|_{F}$$

- $\boldsymbol{F} = \nabla_{\hat{\tau}} \phi, \ J = \| \operatorname{cof}(\boldsymbol{F}) \|_{F}$
- $\nu \circ \phi = \frac{1}{J} \operatorname{cof}(F) \hat{\nu}$ $\tau \circ \phi = \frac{1}{J_B} F \hat{\tau}$ $\mu \circ \phi = \nu \circ \phi \times \tau \circ \phi$

$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}(u)\|_{\mathbb{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^{\mathsf{T}} \nabla(\nu \circ \phi) - \nabla \hat{\nu}\|_{\mathbb{M}}^2$$

- $u \dots displacement of mid-surface$
- t...thickness
- $\mathbb{M}\dots$ material tensor

$$F = \nabla u + P = \nabla \phi, \qquad P = I - \hat{\nu} \otimes \hat{\nu}$$
$$F = \frac{1}{2} (F^{\top} F - P) = \frac{1}{2} (\nabla u^{\top} \nabla u + \nabla u^{\top} P + P \nabla u)$$

$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}(u)\|_{\mathbb{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^{\mathsf{T}} \nabla(\nu \circ \phi) - \nabla \hat{\nu}\|_{\mathbb{M}}^2$$

- $u \dots displacement of mid-surface$
- t...thickness
- $\mathbb{M}\dots$ material tensor

$$\begin{aligned} \mathbf{F} &= \nabla u + \mathbf{P} = \nabla \phi, \qquad \mathbf{P} = \mathbf{I} - \hat{\nu} \otimes \hat{\nu} \\ \mathbf{E} &= \frac{1}{2} (\mathbf{F}^{\top} \mathbf{F} - \mathbf{P}) = \frac{1}{2} (\nabla u^{\top} \nabla u + \nabla u^{\top} \mathbf{P} + \mathbf{P} \nabla u) \end{aligned}$$

membrane energy

$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}(u)\|_{\mathbb{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^{\mathsf{T}} \nabla(\nu \circ \phi) - \nabla \hat{\nu}\|_{\mathbb{M}}^2$$

- $u \dots displacement of mid-surface$
- t...thickness
- $\mathbb{M}\dots$ material tensor

$$\begin{aligned} \mathbf{F} &= \nabla u + \mathbf{P} = \nabla \phi, \quad \mathbf{P} &= \mathbf{I} - \hat{\nu} \otimes \hat{\nu} \\ \mathbf{E} &= \frac{1}{2} (\mathbf{F}^{\top} \mathbf{F} - \mathbf{P}) = \frac{1}{2} (\nabla u^{\top} \nabla u + \nabla u^{\top} \mathbf{P} + \mathbf{P} \nabla u) \end{aligned}$$

membrane energy

bending energy

membrane energy

$$\mathcal{W}(u,\gamma) = \frac{t}{2} \|\boldsymbol{\mathcal{E}}(u)\|_{\mathbb{M}}^2 + \frac{t^3}{24} \|\operatorname{sym}(\boldsymbol{\mathcal{F}}^\top \nabla(\tilde{\nu} \circ \phi)) - \nabla \hat{\nu}\|_{\mathbb{M}}^2 \\ + \frac{t\kappa G}{2} \|\boldsymbol{\mathcal{F}}^\top \tilde{\nu} \circ \phi\|^2$$

 $\gamma \dots$ shearing

$$\tilde{\boldsymbol{\nu}} = rac{ \boldsymbol{\nu} + \boldsymbol{\gamma} }{ \| \boldsymbol{\nu} + \boldsymbol{\gamma} \| } \dots$$
 director

G...shearing modulus

 $\kappa = 5/6\ldots$ shear correction factor

shearing energy

$$\mathcal{L}(u,\boldsymbol{\kappa}^{\text{diff}},\boldsymbol{\sigma}) = \frac{t}{2} \|\boldsymbol{E}(u)\|_{\mathbb{M}}^{2} + \frac{t^{3}}{12} \|\boldsymbol{\kappa}^{\text{diff}}\|_{\mathbb{M}}^{2} - \langle f, u \rangle + \sum_{T \in \mathscr{T}_{h}} \int_{T} \left(\boldsymbol{\kappa}^{\text{diff}} - (\boldsymbol{F}^{T} \nabla(\nu \circ \phi) - \nabla \hat{\nu})\right) : \boldsymbol{\sigma} \, dx$$
$$+ \sum_{E \in \mathscr{E}_{h}} \int_{E} (\sphericalangle(\nu_{L},\nu_{R}) - \sphericalangle(\hat{\nu}_{L},\hat{\nu}_{R})) \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}} \, ds$$

• Lagrange parameter $\pmb{\sigma} \in M_h^{k-1}(\mathscr{T}_h)$ moment tensor

• Lifted curvature difference κ^{diff} via three-field formulation

• Eliminate $\kappa^{\mathrm{diff}} o$ two-field formulation in (u,σ)

N., SCHÖBERL: The Hellan–Herrmann–Johnson and TDNNS method for linear and nonlinear shells, arXiv:2304.13806.

Shell problem

Find $u \in [\mathcal{L}_h^k(\mathscr{T}_h)]^3$ and $\sigma \in M_h^{k-1}(\mathscr{T}_h)$ for $(\boldsymbol{H}_{\nu} := \sum_i (\nabla^2 u_i)\nu_i)$

$$\mathcal{L}(u, \boldsymbol{\sigma}) = \frac{t}{2} \|\boldsymbol{E}(u)\|_{\mathbb{M}}^2 - \frac{6}{t^3} \|\boldsymbol{\sigma}\|_{\mathbb{M}^{-1}}^2 - \langle f, u \rangle$$
$$+ \sum_{T \in \mathscr{T}_h} \int_T \boldsymbol{\sigma} : (\boldsymbol{H}_\nu + (1 - \hat{\nu} \cdot \nu) \nabla \hat{\nu}) \, dx$$
$$+ \sum_{E \in \mathscr{E}_h} \int_E (\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)) \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}} \, dx$$

Use hybridization to eliminate $\sigma
ightarrow$ recover minimization problem

N., SCHÖBERL: The Hellan–Herrmann–Johnson method for nonlinear shells, *Comput. Struct. 225 (2019).*

Shell element (Koiter)

- Use hierarchical shell model
- Additional shearing dofs γ in H(curl)
- $\tilde{\nu} \circ \phi = \frac{\nu \circ \phi + \gamma \circ \phi}{\|\nu \circ \phi + \gamma \circ \phi\|}$
- Free of shear locking

- Use hierarchical shell model
- Additional shearing dofs γ in H(curl)
- $\tilde{\nu} \circ \phi = \nu \circ \phi + \gamma \circ \phi = \frac{1}{J} \operatorname{cof}(\boldsymbol{F}) \hat{\nu} + (\boldsymbol{F}^{\dagger})^{\top} \hat{\gamma}$
- Free of shear locking

ECHTER, R. AND OESTERLE, B. AND BISCHOFF, M.: A hierarchic family of isogeometric shell finite elements, *Comput. Methods Appl. Mech. Engrg* (2013) 254, pp. 170–180.

- Use hierarchical shell model
- Additional shearing dofs γ in H(curl)
- $\tilde{\nu} \circ \phi = \nu \circ \phi + \gamma \circ \phi = \frac{1}{J} \operatorname{cof}(\boldsymbol{F}) \hat{\nu} + (\boldsymbol{F}^{\dagger})^{\top} \hat{\gamma}$
- Free of shear locking

$$\begin{split} \mathcal{L}(u,\sigma,\hat{\gamma}) &= \frac{t}{2} \|\boldsymbol{E}(u)\|_{\mathbb{M}}^{2} + \frac{t\kappa G}{2} \|\hat{\gamma}\|^{2} - \frac{6}{t^{3}} \|\sigma\|_{\mathbb{M}^{-1}}^{2} + \sum_{T \in \mathscr{T}_{h}} \int_{T} \left(\boldsymbol{H}_{\tilde{\nu}} + (1-\tilde{\nu} \cdot \hat{\nu}) \nabla \hat{\nu} - \nabla \hat{\gamma}\right) : \sigma \, dx \\ &+ \sum_{E \in \mathscr{E}_{h}} \int_{E} \left(\sphericalangle(\nu_{L},\nu_{R}) - \sphericalangle(\hat{\nu}_{L},\hat{\nu}_{R}) + \left[\!\left[\hat{\gamma}_{\hat{\mu}}\right]\!\right] \right) \sigma_{\hat{\mu}\hat{\mu}} \, ds \end{split}$$

ECHTER, R. AND OESTERLE, B. AND BISCHOFF, M.: A hierarchic family of isogeometric shell finite elements, *Comput. Methods Appl. Mech. Engrg* (2013) 254, pp. 170–180.

Shell element (Naghdi)

- Linearize to get Reissner-Mindlin and Kirchhoff-Love shell method
- For plates: Recover TDNNS for Reissner-Mindlin plate and Hellan-Herrmann-Johnson method for Kirchhoff-Love plate

N., SCHÖBERL: The Hellan-Herrmann-Johnson and TDNNS method for linear and nonlinear shells, arXiv:2304.13806.

$$\mathcal{W}(u) = t E_{\text{mem}}(u) + t^3 E_{\text{bend}}(u) - f \cdot u, \qquad f = t^3 \tilde{f}$$

$$\mathcal{W}(u) = t^{-2} E_{\text{mem}}(u) + E_{\text{bend}}(u) - \tilde{f} \cdot u, \qquad f = t^3 \tilde{f}$$

$$\mathcal{W}(u) = t^{-2} E_{\text{mem}}(u) + E_{\text{bend}}(u) - \tilde{f} \cdot u, \qquad f = t^3 \tilde{f}$$

 $\mathcal{L}_h^k(\mathscr{T}_h) = \mathcal{P}^k(\mathscr{T}_h) \cap C(\Omega) \subset H^1(\Omega)$

$$\mathcal{W}(u) = t^{-2} E_{\text{mem}}(u) + E_{\text{bend}}(u) - \tilde{f} \cdot u, \qquad f = t^3 \tilde{f}$$

$$E_{\text{mem}}(u) = 0 \implies E_{\text{mem}}(u_h) = 0$$

 $\mathcal{L}_h^k(\mathscr{T}_h) = \mathcal{P}^k(\mathscr{T}_h) \cap C(\Omega) \subset H^1(\Omega)$

$$\mathcal{W}(u) = t^{-2} E_{\text{mem}}(u) + E_{\text{bend}}(u) - \tilde{f} \cdot u, \qquad f = t^3 \tilde{f}$$

$$E_{\text{mem}}(u) = 0 \implies E_{\text{mem}}(u_h) = 0$$

 $\mathcal{L}_h^k(\mathscr{T}_h) = \mathcal{P}^k(\mathscr{T}_h) \cap C(\Omega) \subset H^1(\Omega)$

25

• Pre-asymptotic regime

• Pre-asymptotic regime

• Pre-asymptotic regime

Regge elements

$$\begin{aligned} H(\operatorname{curl}\operatorname{curl}) &:= \{ \sigma \in [L^2(\Omega)]_{\operatorname{sym}}^{2 \times 2} \mid \operatorname{curl}\operatorname{curl} \sigma \in H^{-1}(\Omega) \} \\ \operatorname{Reg}_h^k &:= \{ \varepsilon \in [\mathcal{P}^k(\mathscr{T}_h)]_{\operatorname{sym}}^{d \times d} \mid \llbracket t^\top \varepsilon t \rrbracket_E = 0 \text{ for all edges } E \} \end{aligned}$$

CHRISTIANSEN: On the linearization of Regge calculus, Numerische Mathematik 119, 4 (2011).

- L1: Regge Finite Elements with Applications in Solid Mechanics and Relativity, *PhD thesis, University of Minnesota (2018).*
- N.: Mixed Finite Element Methods For Nonlinear Continuum Mechanics And Shells, *PhD thesis, TU Wien (2021).*

Regge elements

 $\begin{aligned} H(\operatorname{curl}\operatorname{curl}) &:= \{ \sigma \in [L^2(\Omega)]^{2 \times 2}_{\operatorname{sym}} \mid \operatorname{curl}\operatorname{curl} \sigma \in H^{-1}(\Omega) \} \\ \operatorname{Reg}_h^k &:= \{ \varepsilon \in [\mathcal{P}^k(\mathscr{T}_h)]^{d \times d}_{\operatorname{sym}} \mid \llbracket t^\top \varepsilon t \rrbracket_E = 0 \text{ for all edges } E \} \end{aligned}$

$$\frac{1}{t^2} \|\boldsymbol{\Pi}_{L^2}^k \boldsymbol{E}(u_h)\|_{\mathbb{M}}^2$$

• Reduced integration for quadrilateral meshes

• Reduced integration for quadrilateral meshes

 $\frac{1}{t^2} \| \mathcal{I}^k_{\mathcal{R}} \boldsymbol{E}(u_h) \|_{\mathbb{M}}^2$

- Regge interpolant for triangles
- Connection to MITC shell elements

N., SCHÖBERL: Avoiding membrane locking with Regge interpolation, *Comput. Methods Appl. Mech. Engrg 373 (2021).*

Open hemisphere with clamped ends

- Robust mixed methods for continuum mechanics
- Locking-free mixed methods for (nonlinear) plates & shells
- Hellan-Herrmann-Johnson and Regge finite elements for stress and strain/metric fields

- Robust mixed methods for continuum mechanics
- Locking-free mixed methods for (nonlinear) plates & shells
- Hellan-Herrmann-Johnson and Regge finite elements for stress and strain/metric fields

- Coupling for 3D elasticity (A. Pechstein, M. Krommer; JKU Linz)
- NGSolve Add-On
- Extension to Cosserat elasticity, plates, and shells

Literature

- N., PECHSTEIN, SCHÖBERL: Three-field mixed finite element methods for nonlinear elasticity *Comput. Methods Appl. Mech. Engrg 382 (2021)*
- N., SCHÖBERL: The Hellan–Herrmann–Johnson and TDNNS method for linear and nonlinear shells, *arXiv:2304.13806*.
- N., SCHÖBERL: The Hellan–Herrmann–Johnson method for nonlinear shells, *Comput. Struct. 225 (2019).*
- N., SCHÖBERL: Avoiding membrane locking with Regge interpolation, *Comput. Methods Appl. Mech. Engrg 373 (2021).*
- N.: Mixed Finite Element Methods For Nonlinear Continuum Mechanics And Shells, PhD thesis, TU Wien (2021).

Thank You for Your attention!