# The Hellan–Herrmann–Johnson Method for Nonlinear Shells

Michael Neunteufel, Joachim Schöberl





Der Wissenschaftsfonds.



Linz, 21. Oktober 2019









Notation

Method and Shell Element

Relation to HHJ

Kinks

Membrane locking

Numerical Examples

## Notation



Deformation

$$\Phi:\Omega\to\mathbb{R}^3$$





Deformation Displacement

$$\Phi: \Omega \to \mathbb{R}^3$$
$$u := \Phi - id$$







Deformation Displacement Deformation gradient

$$\Phi: \Omega \to \mathbb{R}^3$$
$$u := \Phi - id$$
$$F := \nabla \Phi$$







Deformation Displacement Deformation gradient

$$\Phi: \Omega \to \mathbb{R}^3$$
$$u := \Phi - id$$
$$F := I + \nabla u$$







- Deformation Displacement Deformation gradient Cauchy-Green strain tensor  $\boldsymbol{C} := \boldsymbol{F}^T \boldsymbol{F}$
- $\Phi:\Omega\to\mathbb{R}^3$  $u := \Phi - id$  $F := I + \nabla u$







Deformation Displacement Deformation gradient Cauchy-Green strain tensor Green strain tensor

$$\Phi: \Omega \to \mathbb{R}^3$$
$$u := \Phi - id$$
$$F := I + \nabla u$$
$$C := F^T F$$
$$E := \frac{1}{2}(C - I)$$







Deformation Displacement Deformation gradient Cauchy-Green strain tensor Green strain tensor

$$\Phi: \Omega \to \mathbb{R}^3$$
$$u := \Phi - id$$
$$F := I + \nabla u$$
$$C := F^T F$$
$$E := \frac{1}{2}(C - I)$$



# Elasticity

$$\mathcal{W}(u) = \frac{1}{2} \|\boldsymbol{E}\|_{\boldsymbol{M}}^2 - \langle f, u \rangle$$





• Normal vector  $\nu$  Tangent vector  $\tau_e$  Element normal vector  $\mu=\pm\nu\times\tau_e$ 





• Normal vector  $\hat{\nu}$ Tangent vector  $\hat{\tau}_e$ Element normal vector  $\hat{\mu} = \pm \hat{\nu} \times \hat{\tau}_e$ 







• Normal vector  $\hat{\nu}$ Tangent vector  $\hat{\tau}_e$ Element normal vector  $\hat{\mu} = \pm \hat{\nu} \times \hat{\tau}_e$ 

• 
$$\boldsymbol{F} = \nabla_{\hat{\tau}} \phi, \ J = \| \operatorname{cof}(\boldsymbol{F}) \|_{F}$$







• Normal vector  $\hat{\nu}$ Tangent vector  $\hat{\tau}_e$ Element normal vector  $\hat{\mu} = \pm \hat{\nu} \times \hat{\tau}_e$ 

• 
$$\boldsymbol{F} = \nabla_{\hat{\tau}} \phi, \ J = \| \operatorname{cof}(\boldsymbol{F}) \|_{F}$$

•  $\nu \circ \phi = \frac{1}{J} \operatorname{cof}(F) \hat{\nu}$   $\tau_e \circ \phi = \frac{1}{J_B} F \hat{\tau}_e$  $\mu \circ \phi = \pm \nu \times \tau_e$ 













• 
$$\Omega = \left\{ \varphi(\xi) + z\hat{\nu}(\xi) : \xi \in \omega, z \in \left[ -\frac{t}{2}, \frac{t}{2} \right] \right\}$$







• 
$$\Omega = \left\{ \varphi(\xi) + z\hat{\nu}(\xi) : \xi \in \omega, z \in \left[ -\frac{t}{2}, \frac{t}{2} \right] \right\}$$

• 
$$\Phi(\hat{x} + z\hat{\nu}(\xi)) = \phi(\hat{x}) + z \ (\nu + \beta) \circ \phi(\hat{x})$$







• 
$$\Omega = \left\{ \varphi(\xi) + z\hat{\nu}(\xi) : \xi \in \omega, z \in \left[-\frac{t}{2}, \frac{t}{2}\right] \right\}$$

• 
$$\Phi(\hat{x} + z\hat{\nu}(\xi)) = \phi(\hat{x}) + z\nu \circ \phi(\hat{x})$$



$$\mathcal{W}(u) = rac{t}{2} \| oldsymbol{\mathcal{E}}_{ au au}(u) \|_{oldsymbol{M}}^2 + rac{t^3}{24} \| oldsymbol{F}^T 
abla(
u \circ \phi) - 
abla \hat{
u} \|_{oldsymbol{M}}^2$$



$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^{\mathsf{T}} \nabla(\nu \circ \phi) - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2$$

• Membrane energy



$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^{\mathsf{T}} \nabla(\nu \circ \phi) - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2$$



- Membrane energy
- Bending energy



$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^{\mathsf{T}} \nabla(\nu \circ \phi) - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2$$

- Membrane energy
- Bending energy
- Shearing energy





### **Method and Shell Element**



$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^T \nabla \nu - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2 \\ + \frac{t^3}{24} \sum_{\hat{\boldsymbol{E}} \in \hat{\mathcal{E}}_h} \|\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)\|_{\boldsymbol{M}, \hat{\boldsymbol{E}}}^2$$





$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^T \nabla \nu - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2 \\ + \frac{t^3}{24} \sum_{\hat{E} \in \hat{\mathcal{E}}_h} \|\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)\|_{\boldsymbol{M}, \hat{E}}^2$$





$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^T \nabla \nu - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2 \\ + \frac{t^3}{24} \sum_{\hat{E} \in \hat{\mathcal{E}}_h} \|\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)\|_{\boldsymbol{M}, \hat{E}}^2$$



$$\mathcal{L}(u,\sigma) = \frac{t}{2} \| E_{\tau\tau}(u) \|_{\boldsymbol{M}}^2 - \frac{6}{t^3} \| \sigma \|_{\boldsymbol{M}^{-1}}^2 + \langle \boldsymbol{F}^T \nabla \nu - \nabla \hat{\nu}, \sigma \rangle + \sum_{\hat{E} \in \hat{\mathcal{E}}_h} \langle \sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R), \sigma_{\hat{\mu}\hat{\mu}} \rangle_{\hat{E}}$$



$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^T \nabla \nu - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2 \\ + \frac{t^3}{24} \sum_{\hat{E} \in \hat{\mathcal{E}}_h} \|\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)\|_{\boldsymbol{M}, \hat{E}}^2$$



$$\mathcal{L}(u, \boldsymbol{\sigma}) = \frac{t}{2} \| E_{\tau\tau}(u) \|_{\boldsymbol{M}}^2 - \frac{6}{t^3} \| \boldsymbol{\sigma} \|_{\boldsymbol{M}^{-1}}^2 + \langle \boldsymbol{F}^{\mathsf{T}} \nabla \nu - \nabla \hat{\nu}, \boldsymbol{\sigma} \rangle \\ + \sum_{\hat{E} \in \hat{\mathcal{E}}_h} \langle \sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R), \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}} \rangle_{\hat{E}}$$

•  $\sigma$  has physical meaning of moment



$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^T \nabla \nu - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2 \\ + \frac{t^3}{24} \sum_{\hat{E} \in \hat{\mathcal{E}}_h} \|\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)\|_{\boldsymbol{M}, \hat{E}}^2$$



$$\mathcal{L}(u, \boldsymbol{\sigma}) = \frac{t}{2} \| E_{\tau\tau}(u) \|_{\boldsymbol{M}}^2 - \frac{6}{t^3} \| \boldsymbol{\sigma} \|_{\boldsymbol{M}^{-1}}^2 + \langle \boldsymbol{F}^{\mathsf{T}} \nabla \nu - \nabla \hat{\nu}, \boldsymbol{\sigma} \rangle \\ + \sum_{\hat{E} \in \hat{\mathcal{E}}_h} \langle \sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R), \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}} \rangle_{\hat{E}}$$

- $\sigma$  has physical meaning of moment
- $\bullet~\mbox{Fourth}~\mbox{order}~\mbox{problem} \to \mbox{second}~\mbox{order}~\mbox{problem}$



$$\mathcal{W}(u) = \frac{t}{2} \|\boldsymbol{E}_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 + \frac{t^3}{24} \|\boldsymbol{F}^T \nabla \nu - \nabla \hat{\nu}\|_{\boldsymbol{M}}^2 \\ + \frac{t^3}{24} \sum_{\hat{E} \in \hat{\mathcal{E}}_h} \|\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)\|_{\boldsymbol{M}, \hat{E}}^2$$



$$\mathcal{L}(u,\sigma) = \frac{t}{2} \|E_{\tau\tau}(u)\|_{\boldsymbol{M}}^2 - \frac{6}{t^3} \|\sigma\|_{\boldsymbol{M}^{-1}}^2 + \langle \boldsymbol{F}^T \nabla \nu - \nabla \hat{\nu}, \sigma \rangle \\ + \sum_{\hat{E} \in \hat{\mathcal{E}}_h} \langle \sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R), \sigma_{\hat{\mu}\hat{\mu}} \rangle_{\hat{E}}$$

- $\sigma$  has physical meaning of moment
- $\bullet~\mbox{Fourth}~\mbox{order}~\mbox{problem} \to \mbox{second}~\mbox{order}~\mbox{problem}$



#### Shell problem

Find  $u \in [H^1(\hat{S})]^3$  and  $\sigma \in H(\operatorname{divdiv}, \hat{S})$  for the saddle point problem

$$\mathcal{L}(u,\sigma) = \frac{t}{2} \| E_{\tau\tau}(u) \|_{\boldsymbol{M}}^2 - \frac{6}{t^3} \| \sigma \|_{\boldsymbol{M}^{-1}}^2 + G(u,\sigma) - \langle f, u \rangle,$$

with

$$G(u, \sigma) = \sum_{\hat{T} \in \hat{\mathcal{T}}_h} \int_{\hat{T}} \sigma : (\boldsymbol{H}_{\nu} + (1 - \hat{\nu} \cdot \nu) \nabla \hat{\nu}) d\hat{x}$$
$$- \sum_{\hat{E} \in \hat{\mathcal{E}}_h} \int_{\hat{E}} (\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)) \sigma_{\hat{\mu}\hat{\mu}} d\hat{s}.$$

$$\boldsymbol{H}_{\nu} := \sum_{i} (\nabla^2 u_i) \nu_i$$



#### Shell problem

Find  $u \in [H^1(\hat{S})]^3$  and  $\sigma \in H(\operatorname{divdiv}, \hat{S})$  for the saddle point problem

$$\mathcal{L}(u,\sigma) = \frac{t}{2} \| E_{\tau\tau}(u) \|_{\boldsymbol{M}}^2 - \frac{6}{t^3} \| \sigma \|_{\boldsymbol{M}^{-1}}^2 + G(u,\sigma) - \langle f, u \rangle,$$

with

$$G(u, \sigma) = \sum_{\hat{T} \in \hat{T}_h} \int_{\hat{T}} \sigma : (\boldsymbol{H}_{\nu} ) d\hat{x}$$
$$- \sum_{\hat{E} \in \hat{\mathcal{E}}_h} \int_{\hat{E}} (\sphericalangle(\nu_L, \nu_R) ) \sigma_{\hat{\mu}\hat{\mu}} d\hat{s}$$

$$\boldsymbol{H}_{\nu} := \sum_{i} (\nabla^2 u_i) \nu_i$$



Shell problem (Hybridization) Find  $u \in [H^1(\hat{S})]^3$ ,  $\sigma \in H(\text{divdiv}, \hat{S})^{dc}$  and  $\alpha \in \Gamma(\hat{S})$  for  $\mathcal{L}(u,\sigma) = \frac{t}{2} \| E_{\tau\tau}(u) \|_{\boldsymbol{M}}^2 - \frac{6}{t^3} \| \sigma \|_{\boldsymbol{M}^{-1}}^2 + G(u,\sigma,\alpha) - \langle f, u \rangle,$ with  $G(u, \boldsymbol{\sigma}, \boldsymbol{\alpha}) = \sum_{\hat{T} \in \hat{\mathcal{T}}_{h}} \int_{\hat{T}} \boldsymbol{\sigma} : (\boldsymbol{H}_{\nu} + (1 - \hat{\nu} \cdot \nu) \nabla \hat{\nu}) \, d\hat{x}$  $-\sum_{\hat{E}\in\hat{\mathcal{E}}_{h}}\int_{\hat{E}}(\sphericalangle(\nu_{L},\nu_{R})-\sphericalangle(\hat{\nu}_{L},\hat{\nu}_{R}))\frac{1}{2}(\sigma_{\hat{\mu}_{L}\hat{\mu}_{L}}+\sigma_{\hat{\mu}_{R}\hat{\mu}_{R}})\,d\hat{s}$  $+\int_{\hat{c}}\alpha_{\hat{\mu}}[\![\boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}}]\!]\,d\hat{s}.$ 



$$V_h^k := \Pi^k(\hat{\mathcal{T}}_h) \cap C^0(\hat{S}_h)$$





$$V_h^k := \Pi^k(\hat{\mathcal{T}}_h) \cap C^0(\hat{S}_h)$$

$$\Sigma_h^k := \{ \boldsymbol{\sigma} \in [\Pi^k(\hat{\mathcal{T}}_h)]_{sym}^{2 imes 2} | \llbracket \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}} 
rbracket = 0 \}$$



A. PECHSTEIN AND J. SCHÖBERL: The TDNNS method for Reissner-Mindlin plates, J. Numer. Math. (2017) 137, pp. 713-740.


$$V_h^k := \Pi^k(\hat{\mathcal{T}}_h) \cap C^0(\hat{S}_h)$$

$$\Sigma_h^k := \{ oldsymbol{\sigma} \in [\Pi^k(\hat{\mathcal{T}}_h)]^{2 imes 2}_{sym} | \, \llbracket oldsymbol{\sigma}_{\hat{\mu}\hat{\mu}} 
rbracket = 0 \}$$

$$\Gamma_h^k := \{ \alpha \in [\Pi^k(\hat{\mathcal{T}}_h)]^2 | \llbracket \alpha_{\hat{\mu}} \rrbracket = 0 \}$$

A. PECHSTEIN AND J. SCHÖBERL: The TDNNS method for Reissner-Mindlin plates, J. Numer. Math. (2017) 137, pp. 713-740.











$$u \circ \phi = P[\hat{u}] = \frac{1}{J} F \hat{u}$$
  $F = \nabla_{\hat{x}} \phi, J = \det(F)$ 





$$u \circ \phi = P[\hat{u}] = \frac{1}{J} F \hat{u}$$
  $F = \nabla_{\hat{x}} \phi, J = \det(F)$ 

$$\boldsymbol{\sigma} \circ \boldsymbol{\phi} = \frac{1}{J^2} \boldsymbol{F} \hat{\boldsymbol{\sigma}} \boldsymbol{F}^{\mathsf{T}}$$





$$u \circ \phi = P[\hat{u}] = \frac{1}{J} F \hat{u}$$
  $F = \nabla_{\hat{x}} \phi, J = \det(F)$ 

$$\boldsymbol{\sigma} \circ \phi = \frac{1}{J^2} \boldsymbol{F} \hat{\boldsymbol{\sigma}} \boldsymbol{F}^T$$





$$u \circ \phi = P[\hat{u}] = \frac{1}{J} \boldsymbol{F} \hat{u}$$
  $\boldsymbol{F} = \nabla_{\hat{x}} \phi, \ J = \sqrt{\det(\boldsymbol{F}^{\mathsf{T}} \boldsymbol{F})}$ 

$$\boldsymbol{\sigma} \circ \phi = rac{1}{J^2} \boldsymbol{F} \hat{\boldsymbol{\sigma}} \boldsymbol{F}^T$$





$$u \circ \phi = P[\hat{u}] = \frac{1}{J} \boldsymbol{F} \hat{u}$$
  $\boldsymbol{F} = \nabla_{\hat{x}} \phi, \ J = \| \operatorname{cof}(\boldsymbol{F}) \|$ 

$$\boldsymbol{\sigma} \circ \phi = \frac{1}{J^2} \boldsymbol{F} \hat{\boldsymbol{\sigma}} \boldsymbol{F}^T$$





$$u \circ \phi = P[\hat{u}] = \frac{1}{J} \boldsymbol{F} \hat{u}$$
  $\boldsymbol{F} = \nabla_{\hat{x}} \phi, \ J = \| \operatorname{cof}(\boldsymbol{F}) \|$ 

$$\boldsymbol{\sigma} \circ \phi = \frac{1}{J^2} \boldsymbol{F} \hat{\boldsymbol{\sigma}} \boldsymbol{F}^T$$







































# **Relation to HHJ**



• Discretization method for 4th order elliptic problems

 $\operatorname{div}(\operatorname{div}(\nabla^2 u)) = f$ 





• Discretization method for 4th order elliptic problems

$$\operatorname{div}(\operatorname{div}(\nabla^2 u)) = f \quad \Rightarrow u \in H^2(\Omega)$$





• Discretization method for 4th order elliptic problems

$$\operatorname{div}(\operatorname{div}(\nabla^2 u)) = f \quad \Rightarrow u \in H^2(\Omega)$$



$$\boldsymbol{\sigma} = \nabla^2 u,$$
  
div(div( $\boldsymbol{\sigma}$ )) = f,



$$\operatorname{div}(\operatorname{div}(\nabla^2 u)) = f \quad \Rightarrow u \in H^2(\Omega)$$



WIFN

$$\sigma = \nabla^2 u, \quad \Rightarrow u \in H^1(\Omega)$$
$$\operatorname{div}(\operatorname{div}(\sigma)) = f, \quad \Rightarrow \sigma \in H(\operatorname{divdiv}, \Omega)$$



#### Hellan-Herrmann-Johnson

Find  $u \in H^1(\Omega)$  and  $\sigma \in H(\operatorname{divdiv}, \Omega)$  for the saddle point problem

$$\mathcal{L}(u, \sigma) = -\frac{1}{2} \|\sigma\|^2 + \sum_{T \in \mathcal{T}_h} \int_T \nabla u \cdot \operatorname{div}(\sigma) \, dx - \int_{\partial T} (\nabla u)_\tau \sigma_{\mu\tau} \, ds$$
  
 $- \langle f, u \rangle.$ 

M. COMODI: The Hellan-Herrmann-Johnson method: some new error estimates and postprocessing, *Math. Comp. 52* (1989) pp. 17-29.



#### Hellan-Herrmann-Johnson

Find  $u \in H^1(\Omega)$  and  $\sigma \in H(\operatorname{divdiv}, \Omega)$  for the saddle point problem

$$\mathcal{L}(u, \sigma) = -\frac{1}{2} \|\sigma\|^2 + \sum_{T \in \mathcal{T}_h} \int_T \nabla u \cdot \operatorname{div}(\sigma) \, dx - \int_{\partial T} (\nabla u)_\tau \sigma_{\mu\tau} \, ds$$
  
 $- \langle f, u \rangle.$ 

## Linearization

If the undeformed configuration is a flat plane and f works orthogonal on it, the HHJ method is the linearization of the bending energy of our method.

# Kinks



$$\int_{\hat{E}} (\sphericalangle(\nu_L,\nu_R) - \sphericalangle(\hat{\nu}_L,\hat{\nu}_R)) \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}}$$



$$\int_{\hat{E}} (\sphericalangle(\nu_L,\nu_R) - \sphericalangle(\hat{\nu}_L,\hat{\nu}_R)) \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}}$$

$$\int_{\partial \hat{T}} (\sphericalangle(\{\nu\} \ , \mu) - \sphericalangle(\{\hat{\nu}\}, \hat{\mu})) \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}}$$

$$\{\nu\} := \frac{1}{\|\nu_L + \nu_R\|} (\nu_L + \nu_R)$$





$$\int_{\hat{E}} (\sphericalangle(\nu_L,\nu_R) - \sphericalangle(\hat{\nu}_L,\hat{\nu}_R)) \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}}$$

$$\int_{\partial \hat{T}} (\sphericalangle(\{\nu\},\mu) - \sphericalangle(\{\hat{\nu}\},\hat{\mu})) \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}}$$

$$\{\nu\} := \frac{\operatorname{cof}(\boldsymbol{F}_L)\hat{\nu}_L + \operatorname{cof}(\boldsymbol{F}_R)\hat{\nu}_R}{\|\operatorname{cof}(\boldsymbol{F}_L)\hat{\nu}_L + \operatorname{cof}(\boldsymbol{F}_R)\hat{\nu}_R\|}$$





$$\int_{\hat{E}} (\sphericalangle(\nu_L,\nu_R) - \sphericalangle(\hat{\nu}_L,\hat{\nu}_R)) \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}}$$

$$\int_{\partial \hat{T}} (\sphericalangle(\{\nu\}^n,\mu) - \sphericalangle(\{\hat{\nu}\},\hat{\mu})) \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}}$$

$$\{\nu\}^{n} := \frac{1}{\|\nu_{L}^{n} + \nu_{R}^{n}\|} (\nu_{L}^{n} + \nu_{R}^{n})$$







$$\int_{\hat{E}} (\sphericalangle(\nu_L,\nu_R) - \sphericalangle(\hat{\nu}_L,\hat{\nu}_R)) \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}}$$

$$\int_{\partial \hat{T}} (\sphericalangle(\overline{\{\nu\}}^n,\mu) - \sphericalangle(\{\hat{\nu}\},\hat{\mu})) \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}}$$

$$\overline{\{\nu\}}^n := \boldsymbol{P}_{\tau_e}^{\perp}(\{\nu\}^n)$$





### **Final algorithm**

For given  $u^n$  compute

$$\{\nu\}^n = Av(u^n).$$

Then find  $u \in [H^1(\hat{S})]^3$  and  $\sigma \in H(\mathsf{divdiv}, \hat{S})$  for

$$\mathcal{L}_{\{\nu\}^n}(u,\sigma) = \frac{t}{2} \| E_{\tau\tau}(u) \|_{\boldsymbol{M}}^2 - \frac{6}{t^3} \| \sigma \|_{\boldsymbol{M}^{-1}}^2 + \boldsymbol{G}_{\{\nu\}^n}(u,\sigma) - \langle f, u \rangle,$$

with

$$G_{\{\nu\}^n}(u,\sigma) = \sum_{\hat{\tau}\in\hat{\mathcal{T}}_h} \int_{\hat{\mathcal{T}}} \sigma : (\boldsymbol{H}_\nu + (1-\hat{\nu}\cdot\nu)\nabla\hat{\nu}) \, d\hat{x} \\ - \int_{\partial\hat{\mathcal{T}}} (\sphericalangle(\boldsymbol{P}_{\tau_e}^{\perp}(\{\nu\}^n),\mu) - \sphericalangle(\{\hat{\nu}\},\hat{\mu})) \sigma_{\hat{\mu}\hat{\mu}} \, d\hat{s}.$$







• Normal-normal continuous moment  $\sigma$ 





- Normal-normal continuous moment  $\sigma$
- Preserve kinks





- Normal-normal continuous moment  $\sigma$
- Preserve kinks
- Variation of  $\mathcal{L}(u, \sigma)$  in direction  $\delta \sigma$

$$\int_{\hat{E}} (\sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R)) \delta \boldsymbol{\sigma}_{\hat{\mu}\hat{\mu}} \, d\hat{s} \stackrel{!}{=} 0$$
$$\Rightarrow \sphericalangle(\nu_L, \nu_R) - \sphericalangle(\hat{\nu}_L, \hat{\nu}_R) = 0$$



# **Membrane locking**



$$\frac{1}{t^2} \|\boldsymbol{E}_{\tau\tau}(\boldsymbol{u}_h)\|_{\boldsymbol{M}}^2$$





$$\frac{1}{t^2} \| \boldsymbol{\Pi}_{\boldsymbol{L}^2}^{\boldsymbol{k}} \boldsymbol{E}_{\tau\tau}(\boldsymbol{u}_h) \|_{\boldsymbol{M}}^2$$

• Reduced integration for quadrilateral meshes





- $\frac{1}{t^2} \| \mathcal{I}_{\mathcal{R}}^k \boldsymbol{E}_{\tau\tau}(\boldsymbol{u}_h) \|_{\boldsymbol{M}}^2$
- Reduced integration for quadrilateral meshes
- Regge interpolant for triangles

## Hyperboloid with free ends







20

## Hyperboloid with free ends






## Hyperboloid with free ends







## Hyperboloid with free ends







## Hyperboloid with free ends







20

# **Numerical Examples**

#### Cantilever subjected to end moment





 $M/M_{max}$ 

0.2

0

W = 1t = 0.1 $M = 50\frac{\pi}{3}$  TECHNISCHE

WIEN

M

## Cantilever subjected to end moment















#### **Hemispherical Shell**





• *t* = 0.04

$$P = 50$$

 $E = 6.825 \times 10^{7}$ 

$$\nu = 0.3$$

$$R = 10$$





## **Hemispherical Shell**



| þ  |        |        | B P    |        |  |
|----|--------|--------|--------|--------|--|
| h  | 2      | 1      | 0.5    | 0.25   |  |
| p1 | 4.1218 | 3.8811 | 3.8560 | 3.8735 |  |
| р3 | 3.8319 | 3.8781 | 3.8796 | 3.8796 |  |

25

deflection

#### **Z-Section Cantilever**





•  $P = 6 \times 10^5$ 

$$E = 2.1 \times 10^{11}$$

$$\nu = 0.3$$

$$t = 0.1$$

L = 10

$$W = 2$$

$$H = 1$$

• Membrane stress  $\Sigma_{\scriptscriptstyle X\! X}$  at point  ${m A}$ 

$$\begin{array}{c|c} p1 & p3 \\ \hline 8 \times 6 & -0.7620 \times 10^8 & -1.0929 \times 10^8 \\ 32 \times 15 & -1.0777 \times 10^8 & -1.0933 \times 10^8 \\ \hline 64 \times 30 & -1.0989 \times 10^8 & -1.0933 \times 10^8 \\ \hline ref & -1.08 \times 10^8 \end{array}$$





•  $P = 2 \times 10^{3}$   $E = 6 \times 10^{6}$   $\nu = 0$  t = 0.1L = 1

$$W = 1$$
  
 $H = 1$ 

27







• Kirchhoff-Love shell element



- Kirchhoff-Love shell element
- Moment tensor



- Kirchhoff-Love shell element
- Moment tensor
- Kinks without extra treatment



- Kirchhoff-Love shell element
- Moment tensor
- Kinks without extra treatment
- Generalization of HHJ to shells



- Kirchhoff-Love shell element
- Moment tensor
- Kinks without extra treatment
- Generalization of HHJ to shells
- Possible extension to Reissner-Mindlin shells



- Kirchhoff-Love shell element
- Moment tensor
- Kinks without extra treatment
- Generalization of HHJ to shells
- Possible extension to Reissner-Mindlin shells

#### Thank you for your attention!



- M. NEUNTEUFEL AND J. SCHÖBERL: The Hellan-Herrmann-Johnson Method for Nonlinear Shells, http://arxiv.org/abs/1904.04714
- M. NEUNTEUFEL AND J. SCHÖBERL: Avoiding Membrane Locking with Regge Interpolation, http://arxiv.org/abs/1907.06232